挑战目标跟踪算法极限,SiamRPN系列算法解读

商汤科技智能视频团队首次开源其目标跟踪研究平台 PySOT。PySOT 包含了商汤科技 SiamRPN 系列算法,以及刚被 CVPR2019 收录为 Oral 的 SiamRPN++。此篇文章将解读目标跟踪最强算法 SiamRPN 系列。

背景

由于存在遮挡、光照变化、尺度变化等一些列问题,单目标跟踪的实际落地应用一直都存在较大的挑战。过去两年中,商汤智能视频团队在孪生网络上做了一系列工作,包括将检测引入跟踪后实现第一个高性能孪生网络跟踪算法的 SiamRPN(CVPR 18),更好地利用训练数据增强判别能力的 DaSiamRPN(ECCV 18),以及最新的解决跟踪无法利用到深网络问题的 SiamRPN++(CVPR 19)。其中 SiamRPN++ 在多个数据集上都完成了 10% 以上的超越,并且达到了 SOTA 水平,是当之无愧的目标跟踪最强算法。

项目地址:https://github.com/STVIR/pysot

以上动图中,红色框是 SiamRPN++ 的跟踪效果,蓝色框是 ECCV 2018 上的 UPDT 的结果,可以看出 SiamRPN++ 的效果更佳,跟踪效果更稳定,框也更准。从这个图也可以看出跟踪的一些挑战:光照急剧变化,形状、大小变化等。

SiamRPN (CVPR18 Spotlight)

在 CVPR18 的论文中(SiamRPN),商汤智能视频团队发现孪生网络无法对跟踪目标的形状进行调节。之前的跟踪算法更多的将跟踪问题抽象成比对问题,但是跟踪问题其实和检测问题也非常类似,对目标的定位与对目标框的回归预测一样重要。 研究人员分析了以往跟踪算法的缺陷并对其进行改进:

  1. 大多数的跟踪算法把跟踪考虑成定位问题,但它和检测问题也比较类似,对目标的定位和对目标边界框的回归预测一样重要。为此,SiamRPN 将跟踪问题抽象成单样本检测问题,即需要设计一个算法,使其能够通过第一帧的信息来初始化的一个局部检测器。为此,SiamRPN 结合了跟踪中的孪生网络和检测中的区域推荐网络:孪生网络实现对跟踪目标的适应,让算法可以利用被跟踪目标的信息,完成检测器的初始化;区域推荐网络可以让算法可以对目标位置进行更精准的预测。经过两者的结合,SiamRPN 可以进行端到端的训练。
  2. 以往的滤波类的方法,没办法通过数据驱动的形式提升跟踪的性能。而 SiamRPN 可以端到端训练,所以更大规模的数据集 Youtube-BB 也被引入到了训练中,通过数据驱动的形式提升最终的性能。

结合以上两点创新,在基线算法 SiamFC 的基础上,SiamRPN 实现了五个点以上的提升(OTB100,VOT15/16/17 数据集);同时还达到了更快的速度(160fps)、也更好地实现了精度与速度的平衡。

DaSiamRPN (ECCV18)

SiamRPN 虽然取得了非常好的性能,但由于训练集问题,物体类别过少限制了跟踪的性能;同时,在之前的训练方式中,负样本只有背景信息,一定程度上也限制了网络的判别能力,网络只具备区分前景与不含语义的背景的能力。基于这两个问题,DaSiamRPN 设计了两种数据增强方式:

  1. 孪生网络的训练只需要图像对,而并非完整的视频,所以检测图片也可以被扩展为训练数据。更准确的来说,通过对检测数据集进行数据增强,生成可用于训练的图片对。因此在 DaSiamRPN 中,COCO 和 ImageNet Det 也被引入了训练,极大地丰富了训练集中的类别信息。同时,数据量增大的本身也带来了性能上的提升。
  2. 在孪生网络的训练过程中,通过构造有语意的负样本对来增强跟踪器的判别能力,即训练过程中不再让模板和搜索区域是相同目标;而是让网络学习判别能力,去寻找搜索区域中和模版更相似的物体,而并非一个简单的有语义的物体。

经过上述的改进,网络的判别能力变得更强,检测分数也变得更有辨别力,这样就可以根据检测分数判断目标是否消失。基于此,DaSiamRPN 可以将短时跟踪拓展到长时跟踪,并且在 UAV20L 数据集上比之前最好的方法提高了 6 个点。在 ECCV18 的 VOT workshop 上面,DaSiamRPN 取得了实时比赛的冠军,相比去年的冠军有了 80% 的提升

SiamRPN++ (CVPR19 Oral)

目前,孪生网络中的核心问题在于现有的孪生网络目标跟踪算法只能用比较浅的卷积网络(如 AlexNet),无法利用现代化网络为跟踪算法提升精度,而直接引入深网络甚至会使性能大幅衰减。

为了解决深网络这个 Siamese 跟踪器的痛点,商汤智能视频团队基于之前 ECCV2018 的工作(DaSiamRPN),通过分析孪生神经网络训练过程,发现孪生网络在使用现代化深度神经网络存在位置偏见问题,而这一问题是由于卷积的 padding 会破坏严格的平移不变性。然而深网络并不能去掉 padding,为了缓解这一问题,让深网络能够在跟踪提升性能,SiamRPN++ 中提出在训练过程中加入位置均衡的采样策略。通过修改采样策略来缓解网络在训练过程中的存在的位置偏见问题,让深网络能够发挥出应有的效果。

通过加入这一采样策略,深层网络终于能够在跟踪任务中发挥作用,让跟踪的性能不再受制于网络的容量。同时,为了更好地发挥深层网络的性能,SiamRPN++ 中利用了多层融合。由于浅层特征具有更多的细节信息,而深层网络具有更多的语义信息,将多层融合起来以后,可以跟踪器兼顾细节和深层语义信息,从而进一步提升性能。

除此之外,研究人员还提出了新的连接部件,深度可分离相关层(Depthwise Correlation,后续简写为 DW)。相比于之前的升维相关层(UpChannel correlation,后续简写为 UP),DW 可以极大地简化参数量,平衡两支的参数量,同时让训练更加稳定,也能更好的收敛。

为了验证以上提出的内容,研究人员做了详细的实验。在比较常用的 VOT 和 OTB 数据集上,SiamRPN++ 取得了 SOTA 的结果。在 VOT18 的长时跟踪,以及最近新出的一些大规模数据集上如 LaSOT,TrackingNet,SiamRPN++ 也都取得了 SOTA 的结果。

目前相关代码现已上传至商汤科技开源目标跟踪研究平台 PySOT。PySOT 实现了目前 SOTA 的多个单目标跟踪算法,旨在提供高质量、高性能的视觉跟踪研究代码库,并将其灵活应用于新算法的实现和评估中。欢迎大家使用与交流!

PySOT 开源项目

  • https://github.com/STVIR/pysot
  • SiamRPN
  • http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_High_Performance_Visual_CVPR_2018_paper.pdf
  • DaSiamRPN
  • http://openaccess.thecvf.com/content_ECCV_2018/papers/Zheng_Zhu_Distractor-aware_Siamese_Networks_ECCV_2018_paper.pdf
  • SiamRPN++
  • https://arxiv.org/abs/1812.11703

参考文献

  1. Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, Junjie Yan, "SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks" (Oral) in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019
  2. Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, "Distractor-aware Siamese Networks for Visual Object Tracking" European Conference on Computer Vision (ECCV) 2018
  3. Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, Xiaolin Hu, "High Performance Visual Tracking with Siamese Region Proposal Network" (Spotlight) in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018
  4. Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, Philip H. S. Torr "Fully-Convolutional Siamese Networks for Object Tracking" in ECCV Workshop 2016
  5. Goutam Bhat, Joakim Johnander, Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg."Unveiling the Power of Deep Tracking" European Conference on Computer Vision (ECCV) 2018

原文地址:https://www.cnblogs.com/alan-blog-TsingHua/p/10952795.html

时间: 2024-11-10 17:21:59

挑战目标跟踪算法极限,SiamRPN系列算法解读的相关文章

深入学习高级非线性回归算法 --- 树回归系列算法

前言 前文讨论的回归算法都是全局且针对线性问题的回归,即使是其中的局部加权线性回归法,也有其弊端(具体请参考前文:) 采用全局模型会导致模型非常的臃肿,因为需要计算所有的样本点,而且现实生活中很多样本都有大量的特征信息. 另一方面,实际生活中更多的问题都是非线性问题. 针对这些问题,有了树回归系列算法. 回归树 在先前决策树 (链接) 的学习中,构建树是采用的 ID3 算法.在回归领域,该算法就有个问题,就是派生子树是按照所有可能值来进行派生. 因此 ID3 算法无法处理连续性数据. 故可使用二

目标跟踪之camshift---opencv中meanshift和camshift例子的应用

在这一节中,主要讲目标跟踪的一个重要的算法Camshift,因为它是连续自使用的meanShift,所以这2个函数opencv中都有,且都很重要.为了让大家先达到一个感性认识.这节主要是看懂和运行opencv中给的sample并稍加修改. Camshift函数的原型为:RotatedRect CamShift(InputArray probImage, Rect& window, TermCriteria criteria). 其中probImage为输入图像直方图的反向投影图,window为要

目标跟踪学习笔记_1(opencv中meanshift和camshift例子的应用)

在这一节中,主要讲目标跟踪的一个重要的算法Camshift,因为它是连续自使用的meanShift,所以这2个函数opencv中都有,且都很重要.为了让大家先达到一个感性认识.这节主要是看懂和运行opencv中给的sample并稍加修改. Camshift函数的原型为:RotatedRect CamShift(InputArray probImage, Rect& window, TermCriteria criteria). 其中probImage为输入图像直方图的反向投影图,window为要

CVPR2018 单目标跟踪部分论文

from https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一,A Twofold Siamese Network for Real-Time Object Tracking 论文名称 A Twofold Siamese Network for Real-Time Object Tracking 简介 此算法在SiamFC的基础上增加了语义分支,进一步提升Sia

目标跟踪算法----KCF进阶(基于KCF改进的算法总结)

一.前情提要 如果你对目标跟踪和KCF是什么东西还不了解的话欢迎你看前一篇博文KCF入门详解:http://blog.csdn.net/crazyice521/article/details/53525366.如果你已经对基于KCF的目标跟踪有了一定的了解,并想知道这个算法有怎么样的后续的发展的话,就请听我慢慢介绍以下的东西. 二.KCF的弊端 说道KCF的缺点的话作者在文章中也已经算是说明了,第一点,KCF因为在跟踪过程当中目标框是已经设定好的,从始至终大小为发生变化,但是我们的跟踪序列当中目

计算机视觉目标跟踪的算法分类

摘自百度百科............. (1)基于区域的跟踪算法 基于区域的跟踪算法基本思想是:将目标初始所在区域的图像块作为目标模板,将目标模板与候选图像中所有可能的位置进行相关匹配,匹配度最高的地方即为目标所在的位置.最常用的相关匹配准则是差的平方和准则,(Sum of Square Difference,SSD). 起初,基于区域的跟踪算法中所用到的目标模板是固定的,如 Lucas 等人提出 Lucas-Kanade 方法,该方法利用灰度图像的空间梯度信息寻找最佳匹配区域,确定目标位置.之

视频目标跟踪算法综述

视频跟踪:基于对比度分析的目标跟踪.基于匹配的目标跟踪和基于运动检测的目标跟踪      基于对比度分析的目标跟踪:主要利用目标和背景的对比度差异实现目标的检测与跟踪.这类算法按照跟踪参考点的不同可以分为边缘跟踪# 形心跟踪和质心 跟踪等.这类算法不适合复杂背景中的目标跟踪"但在空中背景下的目标跟踪中非常有效. 基于匹配的目标跟踪:主要通过前后帧之间的特征匹配实现目标的定位.   特征匹配:特征是目标可区别与其他事物的属性, 具有可区分性.可靠性.独立性和稀疏性.基于匹配的目标跟踪算法需要提取目

基于MeanShift的目标跟踪算法及实现

一.简介 首先扯扯无参密度估计理论,无参密度估计也叫做非参数估计,属于数理统计的一个分支,和参数密度估计共同构成了概率密度估计方法.参数密度估计方法要求特征空间服从一个已知的概率密度函数,在实际的应用中这个条件很难达到.而无参数密度估计方法对先验知识要求最少,完全依靠训练数据进行估计,并且可以用于任意形状的密度估计.所以依靠无参密度估计方法,即不事先规定概率密度函数的结构形式,在某一连续点处的密度函数值可由该点邻域中的若干样本点估计得出.常用的无参密度估计方法有:直方图法.最近邻域法和核密度估计

目标跟踪算法meanshift优缺点

原博主:http://blog.csdn.net/carson2005/article/details/7341051 meanShift算法用于视频目标跟踪时,采用目标的颜色直方图作为搜索特征,通过不断迭代meanShift向量使得算法收敛于目标的真实位置,从而达到跟踪的目的. 传统的meanShift算法在跟踪中有几个优势: (1)算法计算量不大,在目标区域已知的情况下完全可以做到实时跟踪: (2)采用核函数直方图模型,对边缘遮挡.目标旋转.变形和背景运动不敏感. 同时,meanShift算