BZOJ 1834 ZJOI2010 network 网络扩展 Dinic+EK费用流

标题效果:给定一个n积分m无向图边,每一方有一个扩展的成本c。代表扩张1费用的交通,寻求最大流量和扩大的最大流量k最小成本

第一问直接运行的最大流量

第二个问题将是连接到一个流的末端每个边缘的起点是正无穷大、费用c缘 然后,n汇点被连接到流动ans+k 费用为0的边 跑最小费用最大流就可以

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 5010
#define INF 0x3f3f3f3f
#define S 1
#define T (n+1)
using namespace std;
struct edge{
	int x,y,f,c;
}edges[M];
struct abcd{
	int to,f,c,next;
}table[M<<2];
int head[M],tot=1;
int n,m,k,ans,anscost;
int dpt[M];
void Add(int x,int y,int f,int c)
{
	table[++tot].to=y;
	table[tot].f=f;
	table[tot].c=c;
	table[tot].next=head[x];
	head[x]=tot;
}
bool BFS()
{
	static int q[M],r,h;
	int i;
	memset(dpt,-1,sizeof dpt);
	r=h=0;q[++r]=S;dpt[S]=1;
	while(r!=h)
	{
		int x=q[++h];
		for(i=head[x];i;i=table[i].next)
			if(table[i].f&&!~dpt[table[i].to])
			{
				dpt[table[i].to]=dpt[x]+1;
				q[++r]=table[i].to;
				if(table[i].to==T)
					return true;
			}
	}
	return false;
}
int Dinic(int x,int flow)
{
	int i,left=flow;
	if(x==T) return flow;
	for(i=head[x];i&&left;i=table[i].next)
		if(table[i].f&&dpt[table[i].to]==dpt[x]+1)
		{
			int temp=Dinic(table[i].to,min(left,table[i].f) );
			if(!temp) dpt[table[i].to]=-1;
			left-=temp;
			table[i].f-=temp;
			table[i^1].f+=temp;
		}
	return flow-left;
}
bool EK()
{
	static int q[65540],flow[M],cost[M],from[M];
	static bool v[M];
	static unsigned short r,h;
	int i;
	memset(cost,0x3f,sizeof cost);
	cost[S]=0;flow[S]=INF;q[++r]=S;
	while(r!=h)
	{
		int x=q[++h];v[x]=0;
		for(i=head[x];i;i=table[i].next)
			if(table[i].f)
				if(cost[table[i].to]>cost[x]+table[i].c)
				{
					cost[table[i].to]=cost[x]+table[i].c;
					flow[table[i].to]=min(flow[x],table[i].f);
					from[table[i].to]=i;
					if(!v[table[i].to])
						v[table[i].to]=1,q[++r]=table[i].to;
				}
	}
	if(cost[T]==INF) return false;
	anscost+=flow[T]*cost[T];
	for(i=from[T];i;i=from[table[i^1].to])
		table[i].f-=flow[T],table[i^1].f+=flow[T];
	return true;
}
int main()
{
	int i;
	cin>>n>>m>>k;
	for(i=1;i<=m;i++)
	{
		scanf("%d%d",&edges[i].x,&edges[i].y);
		scanf("%d%d",&edges[i].f,&edges[i].c);
		Add(edges[i].x,edges[i].y,edges[i].f,0);
		Add(edges[i].y,edges[i].x,0,0);
	}
	Add(n,T,INF,0);
	Add(T,n,0,0);
	while( BFS() )
		ans+=Dinic(S,INF);
	table[tot-1].f=k;
	for(i=1;i<=m;i++)
	{
		Add(edges[i].x,edges[i].y,INF,edges[i].c);
		Add(edges[i].y,edges[i].x,0,-edges[i].c);
	}
	while( EK() );
	cout<<ans<<' '<<anscost<<endl;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

时间: 2024-10-20 08:30:04

BZOJ 1834 ZJOI2010 network 网络扩展 Dinic+EK费用流的相关文章

BZOJ 1834 ZJOI2010 network 网络扩容 Dinic+EK费用流

题目大意:给定一个n个点m条边的无向图,每条边有一个扩容费用c,代表每扩容1流量的花费,求最大流及将最大流扩大k的最小费用 第一问直接跑最大流 第二问将每条边的起始点向终点连接一条流量为正无穷.费用为c的边 然后将n向汇点连一条流量为ans+k 费用为0的边 跑最小费用最大流即可 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define M 5010 #

bzoj 1834: [ZJOI2010]network 网络扩容 -- 最大流+费用流

1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MB Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. Input 输入文件的第一行包含三个整数N,M,K,表示有向图的点数.边数以及所需要增加的流量. 接下来的M行每行包含四个整数u,v,C,W,表示一

bzoj:1834: [ZJOI2010]network 网络扩容

Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. Input 输入文件的第一行包含三个整数N,M,K,表示有向图的点数.边数以及所需要增加的流量. 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边. Output 输出文件一行包含两个整数,分别表示问题1和问题2的答案. Sample Inpu

[BZOJ 1834][ZJOI2010]network 网络扩容(费用流)

Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. Solution 先求出最大流maxflow 求最小扩容费用的话,对于每一条边,建一条容量为c费用为0的边,再建一条容量为INF费用为w的边 跑费用流求流入maxflow+k的费用 #include<iostream> #include<cstdio> #include

【BZOJ】1834: [ZJOI2010]network 网络扩容(最大流+费用流)

我又思考人生了T_T,nd的数组开小了,一直wa,调了一个小时才发现啊!!!!!我一直以为我的isap错了T_T,可是完全没错啊!!!! 这题其实第一个问很简单,跑一次最大流即可.第二个问就是在跑完最大流的残量网络上每条边都扩充容量为oo,费用为边的费用,然后设个超级源连一条容量为k的边到点1,再跑一次费用流即可. 理由很简单,自己想,我就不说了. #include <cstdio> #include <cstring> #include <cmath> #includ

1834 [ZJOI2010]network 网络扩容

题解:先在原网络上跑最大流,然后加上带费用的边跑费用流 高一的时候做这道题怎么想不到? 注意:maxn代表的不一定是同一个变量的范围 #include<iostream> #include<cstdio> #include<cstring> #include<vector> #include<queue> using namespace std; const int inf=1000000000; const int maxn=5009; int

bzoj1834: [ZJOI2010]network 网络扩容

努力看了很久样例一直过不了...然后各种输出中间过程啊巴拉巴拉弄了1h,没办法了...然后突然想到啊原来的边可以用啊为什么不用...于是A了...感人肺腑 #include<cstdio> #include<cstring> #include<queue> #include<iostream> #include<algorithm> using namespace std; #define rep(i,n) for(int i=1;i<=n

【BZOJ1834】 [ZJOI2010]network 网络扩容

Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. Input 输入文件的第一行包含三个整数N,M,K,表示有向图的点数.边数以及所需要增加的流量. 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边. Output 输出文件一行包含两个整数,分别表示问题1和问题2的答案. Sample Inpu

【最大流】【费用流】bzoj1834 [ZJOI2010]network 网络扩容

引用题解: 最大流+费用流. 第一问最大流即可. 第二问为“最小费用最大流”. 由题意,这一问的可转化为在上一问的“残量网络”上,扩大一些边的容量,使能从新的图中的最大流为k. 那么易得:对于还有剩余流量的边,走过他们的费用为0.而“增加流量”可变为:对残留网络上的每一条边建一条容量是∞费用是w的边.这表示从这些边走,每一流量的费用为w,这就符合题意了. 最后建一个超级源点,从超级源向1建一条容量为k,费用为0的边,就可进行最小费用最大流算法. #include<cstdio> #includ