协方差矩阵公式推导

已知n维随机变量\(\vec{X}=(X_{1},X_{2},...,X_{n})\)的协方差矩阵为\(C = \begin{bmatrix}c_{11} & c_{12} & ... & c_{1n} \\c_{21} & c_{22} & ... & c_{2n} \\. & .& &.\\. & .& &.\\. & .& &.\\c_{n1} & c_{n2} &...&c_{nn}\end{bmatrix} \),其中\(c_{ij} = E\big\{[X_{i}-E(X_{i})][X_{j}-E(X_{j})]\big\}\)。那么,如何将协方差矩阵写成向量形式呢?

设\(X_{i}\)的样本量为m,则\(C = \frac{1}{m}\begin{bmatrix} (X_{1}-E(X_{1}))^{T}(X_{1}-E(X_{1})) & ... & (X_{1}-E(X_{1}))^{T}(X_{n}-E(X_{n})) \\ (X_{2}-E(X_{2}))^{T}(X_{1}-E(X_{1})) & ... & (X_{2}-E(X_{2}))^{T}(X_{n}-E(X_{n})) \\. &. & .\\. &. & .\\. &. & .\\ (X_{n}-E(X_{n}))^{T}(X_{1}-E(X_{1})) & ... & (X_{n}-E(X_{n}))^{T}(X_{n}-E(X_{n})) \end{bmatrix} \)

时间: 2024-10-01 05:55:31

协方差矩阵公式推导的相关文章

协方差、协方差矩阵定义与计算

转自:http://blog.csdn.net/xw20084898/article/details/42077141 协方差的意义和计算公式 学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差.首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过. 均值: 标准差: 方差: 很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的, 而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均.以

协方差矩阵概念及计算

理解协方差矩阵的关键就在于牢记它计算的是不同维度之间的协方差,而不是不同样本之间,拿到一个样本矩阵,我们最先要明确的就是一行是一个样本还是一个维度,心中明确这个整个计算过程就会顺流而下,这么一来就不会迷茫了 浅谈协方差矩阵 今天看论文的时候又看到了协方差矩阵这个破东西,以前看模式分类的时候就特困扰,没想到现在还是搞不清楚,索性开始查协方差矩阵的资料,恶补之后决定马上记录下来,嘿嘿~本文我将用自认为循序渐进的方式谈谈协方差矩阵. 统计学的基本概念 学过概率统计的孩子都知道,统计里最基本的概念就是样

浅谈协方差矩阵

今天看论文的时候又看到了协方差矩阵这个破东西,以前看模式分类的时候就特困扰,没想到现在还是搞不清楚,索性开始查协方差矩阵的资料,恶补之后决定马上记录下来,嘿嘿~本文我将用自认为循序渐进的方式谈谈协方差矩阵. 统计学的基本概念 学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差.首先我们给你一个含有n个样本的集合X={X1,…,Xn},依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过. 均值: 标准差: 方差: 很显然,均值描述的是样本集合的

协方差矩阵(转载)

总结一下,协方差其实就是任意两个维度的数据偏差的乘累加的平均. 协方差的意义和计算公式 学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差.首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过. 均值: 标准差: 方差: 很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的, 而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均.以这两个集合为例,[0,8,12,20]和[8,9,11,

Stat1—浅谈协方差矩阵

今天看论文的时候又看到了协方差矩阵这个破东西,以前看模式分类的时候就特困扰,没想到现在还是搞不清楚,索性开始查协方差矩阵的资料,恶补之后决定马上记录下来,嘿嘿~本文我将用自认为循序渐进的方式谈谈协方差矩阵. 统计学的基本概念 学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差.首先我们给你一个含有n个样本的集合X={X1,…,Xn},依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过. 均值: 标准差: 方差: 很显然,均值描述的是样本集合的

[转]浅谈协方差矩阵(牢记它的计算是不同维度之间的协方差,而不是不同样本之间。)

注意:方差就是方差:方差的平方就是方差的平方.有的时候以为方差就是方差的平方. cov11 = sum((dim1-mean(dim1)).*(dim1-mean(dim1)))/(size(MySample,1)-1) cov11 = 296.7222 >> std(dim1) ans = 17.2256 >> std(dim1).^2 ans = 296.7222 一.统计学的基本概念 统计学里最基本的概念就是样本的均值.方差.标准差.首先,我们给定一个含有n个样本的集合,下面

hdu4089(公式推导)概率dp

题意:有n人都是仙剑5的fans,现在要在官网上激活游戏,n个人排成一个队列(其中主角Tomato最初排名为m), 对于队列中的第一个人,在激活的时候有以下五种情况: 1.激活失败:留在队列中继续等待下一次激活(概率p1) 2.失去连接:激活失败,并且出队列然后排到队列的尾部(概率p2) 3.激活成功:出队列(概率p3) 4.服务器瘫:服务器停止服务了,所有人都无法激活了(概率p4) 求服务器瘫痪并且此时Tomato的排名<=k的概率. 解法:ans[i][j]表示i个人出于第j个位置要到目的状

方差variance, 协方差covariance, 协方差矩阵covariance matrix

参考: 如何通俗易懂地解释「协方差」与「相关系数」的概念?(非常通俗易懂) 浅谈协方差矩阵 方差(variance) 集合中各个数据与平均数之差的平方的平均数.在概率论与数理统计中,方差(Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度.  方差越大,数据的离散程度就越大. 协方差(covariance) 协方差表示的是两个变量总体误差的方差,这与只表示一个变量误差的方差不同.如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么

[转]浅谈协方差矩阵

转自http://www.cnblogs.com/chaosimple/p/3182157.html 一.统计学的基本概念 统计学里最基本的概念就是样本的均值.方差.标准差.首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述: 均值: 标准差: 方差: 均值描述的是样本集合的中间点,它告诉我们的信息是有限的,而标准差给我们描述的是样本集合的各个样本点到均值的距离之平均. 以这两个集合为例,[0, 8, 12, 20]和[8, 9, 11, 12],两个集合的均值都是10,但显然两个