Problem Description
Cowl is good at solving math problems. One day a friend asked him such a question: You are given a cube whose edge length is N, it is cut by the planes that was paralleled to its side planes into N * N * N unit cubes. Two unit cubes
may have no common points or two common points or four common points. Your job is to calculate how many pairs of unit cubes that have no more than two common points.
Process to the end of file.
题目的大致意思是:
就是把一个正方形块分割成n^3个小正方形,然后要你计算出公共点不超过两个的正方形块有几个?
思路:
因为正方形块的公共点数只可能是0,1,2,4三种,然后我们就只要把4的这种情况排除掉就好了。
这里借鉴一个人的博客:
这纯粹是一道数学题目,推理如下:
给你一个正方体,切割成单位体积的小正方体,求所有公共顶点数<=2的小正方体的对数。 公共点的数目只可能有:0,1,2,4. 很明显我们用总的对数减掉有四个公共点的对数就可以了。 总的公共点对数:n^3*(n^3-1)/2(一共有n^3块小方块,从中选出2块)(只有两个小方块之间才存在公共点,我们从所有的小方块中任意选出两个,自然就确定了这两个小方块的公共点的对数,从所有小方块中任意选取两个,总得选取方法数就是所有种类对数数目的总和!)公共点为4的对数:一列有n-1对(n个小方块,相邻的两个为一对符合要求),一个面的共有 n^2列,底面和左面,前面三个方向相同,同理可得,故总数为:3*n^2(n-1)
所以结果为:n^3 * (n^3-1) - 3*n^2(n-1)
写的很详细,就是说总共的可能是n^3个点中取出2个的情况。然后减去3*n*n*(n-1),这个式子代表的是因为有上,左,前面三种情况,然后每个面都有n*n种情况,每一种情况都有(n-1)对,所以把它们乘起来就好了。
#include<stdio.h> #include<string.h> int main(){ int n,i,t; __int64 sum=0; while(~scanf("%d",&n)){ t=n*n*n; sum=t*(t-1)/2-3*n*n*(n-1); printf("%I64d\n",sum); } }