最大熵

  熵:

    表示随机变量不确定性的度量。

    

    只依赖于随机变量X的分布,与其取值无关

    0<=H(X)<=log(n),当随机变量X符合均匀分布时,熵最大

  最大熵:

    最大熵可理解为满足现有约束条件的情况下,其余不确定的信息默认为等可能的

时间: 2025-01-31 21:38:52

最大熵的相关文章

最大熵算法及简单样例

近期在学模式识别,正在看Introduction to Pattern Recognition这本书,挺不错的一本书.好.以下和大家一起来学习最大熵算法. 首先,最大熵算法是干什么的呢?通常是用来预计一个分布,至于把分布预计出来之后用来干什么,那要视详细问题而定. 那这里的"熵"是什么意思呢?它是指信息熵,一个分布的均匀程度能够用熵的大小来衡量.熵越大,就越均匀.而最大熵就是要求在满足特定约束下,分布是什么样的时候.熵最大.也就是越均匀越好. 为什么在满足特定约束下越均匀越好?由于你已

最大熵模型

我的理解:在限制的条件下,根据已知情况求解未知情况,最优解的选择就是使得未知的熵最大的那个概率 我们在投资时常常讲不要把所有的鸡蛋放在一个篮子里,这样可以降低风险.在信息处理中,这个原理同样适用.在数学上,这个原理称为最大熵原理(the maximum entropy principle). 让我们看一个拼音转汉字的简单的例子.假如输入的拼音是"wang-xiao-bo",利用语言模型,根据有限的上下文(比如前两个词),我们能给出两个最常见的名字"王小波"和&quo

统计学习方法 &ndash;&gt; 逻辑死地回归与最大熵模型

前言 本章的两个模型都是对数线性模型. 逻辑斯蒂分布 如果变量X服从逻辑斯蒂分布,那么X的分布一定是y轴对称的.曲线在中心部分增长的较快.两端增长缓慢. 二项逻辑斯蒂回归模型 其本质就是条件概率P(Y|X).也就意味着给定X,求出最大可能的Y来. Y取值只有1和0. 考虑条件概率分布. 逻辑斯蒂回归模型:输出Y=1的对数几率是输出x的线性函数的模型. 参数模型估计 还是求极大似然估计. 逻辑回归的优缺点: 优点:1>实现简单         2>计算量小,速度快,存储资源低 缺点:1>欠

统计学习方法 李航---第6章 逻辑回归与最大熵模型

第6章 逻辑回归与最大熵模型 逻辑回归(logistic regression)是统计学习中的经典分类方法.最大嫡是概率模型学习的一个准则将其推广到分类问题得到最大熵模型(maximum entropy model).逻辑回归模型与最大熵模型都属于对数线性模型. 6.1 逻辑回归模型 定义6.1(逻辑分布):设X是连续随机变量,X服从逻辑斯谛分布是指 X具有下列分布函数和密度函数 式中,u为位置参数,r>0为形状参数. 逻辑分布的密度函数f(x)和分布函数F(x)的图形如图所示.分布函数属于逻辑

七月算法--12月机器学习在线班-第七次课笔记—最大熵

七月算法--12月机器学习在线班-第七次课笔记—最大熵 七月算法(julyedu.com)12月机器学习在线班学习笔记 http://www.julyedu.com

最大熵模型简记

最近两天简单看了下最大熵模型,特此做简单笔记,后续继续补充.最大熵模型是自然语言处理(NLP, nature language processing)被广泛运用,比如文本分类等.主要从分为三个方面,一:熵的数学定义:二:熵数学形式化定义的来源:三:最大熵模型. 注意:这里的熵都是指信息熵. 一:熵的数学定义: 下面分别给出熵.联合熵.条件熵.相对熵.互信息的定义. 熵:如果一个随机变量X的可能取值为X = {x1, x2,-, xk},其概率分布为P(X = xi) = pi(i= 1,2, .

最大熵学习笔记(一)预备知识

  生活中我们经常听到人们说"不要把鸡蛋放到一个篮子里",这样可以降低风险.深究一下,这是为什么呢?其实,这里边包含了所谓的最大熵原理(The Maximum Entropy Principle).本文为一则读书笔记,将对最大熵原理以及由此导出的最大熵模型进行介绍,重点给出其中所涉及数学公式的理解和详细推导. 相关链接 最大熵学习笔记(零)目录和引言 最大熵学习笔记(一)预备知识 最大熵学习笔记(二)最大熵原理 最大熵学习笔记(三)最大熵模型 最大熵学习笔记(四)模型求解 最大熵学习笔

最大熵学习笔记(三)最大熵模型

  生活中我们经常听到人们说"不要把鸡蛋放到一个篮子里",这样可以降低风险.深究一下,这是为什么呢?其实,这里边包含了所谓的最大熵原理(The Maximum Entropy Principle).本文为一则读书笔记,将对最大熵原理以及由此导出的最大熵模型进行介绍,重点给出其中所涉及数学公式的理解和详细推导. 相关链接 最大熵学习笔记(零)目录和引言 最大熵学习笔记(一)预备知识 最大熵学习笔记(二)最大熵原理 最大熵学习笔记(三)最大熵模型 最大熵学习笔记(四)模型求解 最大熵学习笔

最大熵学习笔记(四)模型求解

  生活中我们经常听到人们说"不要把鸡蛋放到一个篮子里",这样可以降低风险.深究一下,这是为什么呢?其实,这里边包含了所谓的最大熵原理(The Maximum Entropy Principle).本文为一则读书笔记,将对最大熵原理以及由此导出的最大熵模型进行介绍,重点给出其中所涉及数学公式的理解和详细推导. 相关链接 最大熵学习笔记(零)目录和引言 最大熵学习笔记(一)预备知识 最大熵学习笔记(二)最大熵原理 最大熵学习笔记(三)最大熵模型 最大熵学习笔记(四)模型求解 最大熵学习笔

最大熵模型原理小结

最大熵模型(maximum entropy model, MaxEnt)也是很典型的分类算法了,它和逻辑回归类似,都是属于对数线性分类模型.在损失函数优化的过程中,使用了和支持向量机类似的凸优化技术.而对熵的使用,让我们想起了决策树算法中的ID3和C4.5算法.理解了最大熵模型,对逻辑回归,支持向量机以及决策树算法都会加深理解.本文就对最大熵模型的原理做一个小结. 1. 熵和条件熵的回顾 在决策树算法原理(上)一文中,我们已经讲到了熵和条件熵的概念,这里我们对它们做一个简单的回顾. 熵度量了事物