【每日算法】洗牌算法

洗牌算法

给定一个n个数的序列,设计一个算法将其随机打乱,保证每个数出现在任意一个位置的概率相同(也就是说在n!个的排列中,每一个排列出现的概率相同)。

朴素的做法:

假设输入为数组num[length]。

随机选一个数,放到num[0]中,再随机选数,如果该数已经选过,重新选,直到该数未选过时放入num[1]中,以此类推,直到所有的数都选出来,很明显,这种选法一共有n!中可能,每种可能出现的概率都相同。

但是该做法效率不高,因为选过的数再选将耗费大量时间。

改进的洗牌算法:

基于以上算法的缺陷,我们做出改进:选过的数将不再考虑。比如num[0…k]为已选的数,那么我们的随机只在k+1到length-1间进行。

void MySwap(int &a, int &b)
{
    int tmp = x;
    x = y;
    y = tmp;
}

void Shuffle(int num[], int length)
{
    if (NULL == num || length <= 0) return;
    for (int index = length-1; index >= 1; --index)
    {
        MySwap(num[index], num[rand()%(index+1)]);
    }
}

解释一下:

index为本次选的牌的存放位置,rand()%(index+1)产生0到index之间的随机数,而已选的数的下标为index+1到length-1,所以可以保证已选的数不会再重复选到。

一些小细节:

习惯使用–index而不是index–的原因是:index–需要一个临时变量来保存自减前的index值,而–index,直接先自减,之后返回自身,因此效率更高一些。(当然,实际上编译器可能会做一些优化,使得两者的区别不大,这仅仅是一个良好的编程习惯)。

使用逆序:rand()%(index+1)比较方便地产生0到index之间的随机数,如果是正序,则需要写成:

    for (int index = 0; index < length; ++index)
    {
        MySwap(num[index], num[index+rand()%(length-index)]);
    }

运算多一些,而且不够简洁。

最后提一个点:以上代码每次运算的结果都会是一样的,如果想要每次都不一样,需要添加种子(使用srand((int)time(0));根据时间来选择种子)。

每天进步一点点,Come on!

(●’?’●)



本人水平有限,如文章内容有错漏之处,敬请各位读者指出,谢谢!

时间: 2024-10-26 03:57:09

【每日算法】洗牌算法的相关文章

算法之洗牌算法

洗牌算法是我们常见的随机问题,在玩游戏.随机排序时经常会碰到,一个最常用的地方就是组卷.它可以抽象成这样:M以内的所有自然数的随机顺序数组. package com.math; import java.util.Random; /** * @author summer * */ public class Shuffle { static final int[] a = new int[54]; static Random rnd = new Random(); static{ for(int i

完美洗牌算法

本文是看完july博客完美洗牌之后的个人笔记. 题目:把a1,a2,a3,a4,...,an-1 an,b1,b2,b3,...,bn-1,bn变成a1,b1,a2,b1,...,an,bn.要求时间复杂度为O(n),空间复杂度为O(1). 1.位置置换算法:b是新开的一个数组,但是时间复杂度为O(n),空间复杂度为O(n). void perfectShuttle(int a[],int n){ int n2=n*2,b[N]; for(int i=1;i<=n2;i++) b[(2*i)%(

洗牌算法Fisher-Yates以及C语言随机数的产生

前些天在蘑菇街的面试中碰到一道洗牌的算法题,拿出来和大家分享一下! 原题是:54张有序的牌,如何无序的发给3个人? 这个题是运用经典的洗牌算法完成.首先介绍一种经典的洗牌算法--Fisher-Yates.现在大家在网上看到,大多是Fisher-Yates算法的变形.将本来O(n2),简化到了O(n).代码如下: #include<stdio.h> #include <stdlib.h> void func(char *, int); void main() { char a[7]

洗牌算法(转载)

作者:flyinghearts出处:http://www.cnblogs.com/flyinghearts/ 又一次看到讨论"洗牌"算法的文章,奇怪不少人喜欢造轮子,但造的轮子却远没有STL的random_shuffle好用. 若某个序列里面的每个元素在每个位置已经等概率出现,那么新增加一个元素,只要新增加的元素和所有元素进行等概率交换,则新序列中每个元素在每个位置仍是等概率出现.(若原来有n个元素,新增加的第n+1个元素在任一位置b的概率显然是1/(n+1),在同一位置b,原来的n个

JS洗牌算法

洗牌算法 以请将1~10共10个数字的数组随机打乱为列子,目前我知道的有两种方法,一种sort()方法和push()方法. 一.sort方法: var arr=[1,2,3,4,5,6,7,8,9]; function Upset(a,b) { //用Math.random()函数生成0~1之间的随机数与0.5比较,返回-1或1   return Math.random()>.5 ? -1 : 1;  //简化上面的方法 // return 0.5 - Math.random();  } arr

洗牌算法浅试

Python有自带的洗牌算法函数shuffle(). 自己也通过学习也琢磨了一下它的实现,然后给出一个时间复杂度O(n),空间复杂度O(1)的例子: 1 import random 2 3 def shuffle1(lst) : 4 l = len(lst) 5 if l <= 1 : return lst 6 7 i = 0 8 while l > 1 : 9 j = int(random.random() * l) 10 t = lst[i] 11 lst[i] = lst[i+j] 12

转:浅谈洗牌算法(面试题)

很多人都有耳闻过洗牌算法,时常会在面试中碰到,我们下面来定义一下这个问题. 所谓洗牌算法,就是给你一个1到n的序列,让你随机打乱,保证每个数出现在任意一个位置的概率相同,也就是说在n!个的排列中,每一个排列出现的概率相同. 最朴素的做法 对于这个问题我们从最朴素的解法谈起.每次随机选出一个没有被选过的数放到一个队列中,如果随机出来的数已经被选过,那么继续随机直到遇到一个没有被选过的数放入到队列中:重复这样子操作直到所有的数都被选择出来. 我们看看这样子作为什么是对的.首先选第一个数的时候有n个数

随机算法之30万员工抽取10万员工(洗牌算法)

算法方面不是我的强项,所以遇到这个问题,记录一下解决方法: 最开始的时候,做法是从random中来随机选取一个,然后再判断已有列表中是否存在, 然后以此重复,看到这里,会算法的同学肯定会说这明显不行:就好比多少人中生日为一天的概率大于50%: 所以然后查找了一些资料,看到了洗牌算法:包括多种变种吧. 这里说一下我参考的解决办法: 比如有30万个元素的列表,那么第一次随机选择一个:记录位置是x: 然后把元素的最后一个位置元素存入位置x,然后把最后位置的元素删除: (这里在交换的时候,需要判断这个元

Javascript 洗牌算法,打乱数组,随机获取元素

//利用洗牌算法Array.prototype.shuffle=function(){ var i,t,m=this.length; while(m){ i=Math.floor(Math.random()*m--); t=this[m]; this[m]=this[i]; this[i]=t; } return this;} var arr=[1,2,3,4,5];console.log(arr.shuffle());console.log(arr.slice(0,2));