BZOJ4011 [HNOI2015]落忆枫音

本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

Description

「恒逸,你相信灵魂的存在吗?」

郭恒逸和姚枫茜漫步在枫音乡的街道上。望着漫天飞舞的红枫,枫茜突然问出

这样一个问题。

「相信吧。不然我们是什么,一团肉吗?要不是有灵魂……我们也不可能再见

到你姐姐吧。」

恒逸给出了一个略微无厘头的回答。枫茜听后笑了笑。

「那你仔细观察过枫叶吗?」

说罢,枫茜伸手,接住了一片飘落的枫叶。

「其实每一片枫叶都是有灵魂的。你看,枫叶上不是有这么多脉络吗?我听说,

枫叶上有一些特殊的位置,就和人的穴位一样。脉络都是连接在这些穴位之间的。

枫树的灵魂流过每片枫叶的根部,沿着这些脉络,慢慢漫进穴位,沁入整片枫叶。

也是因为这个原因,脉络才都是单向的,灵魂可不能倒着溜回来呢。」

恒逸似懂非懂地点了点头。枫茜接着说了下去。

「正是因为有了灵魂,每片枫叶才会与众不同。也正是因为有了灵魂,每片枫

叶也都神似其源本的枫树,就连脉络也形成了一棵树的样子。但如果仔细看的话,

会发现,在脉络树之外,还存在其它的非常细的脉络。虽然这些脉络并不在树上,

但他们的方向也同样顺着灵魂流淌的方向,绝不会出现可能使灵魂倒流的回路。」

恒逸好像突然想到了什么。

「那这些脉络岂不是可以取代已有的脉络,出现在脉络树上?」

枫茜闭上了眼睛。

「是啊,就是这样。脉络树并不是唯一的。只要有一些微小的偏差,脉络树就

可能差之万里,哪怕是在这同一片枫叶上。就像我们的故事,结局也不是唯一的。

只要改变一个小小的选项,故事流程可能就会被彻底扭转。」

「真是深奥啊……」

恒逸盯着这片红枫,若有所思地说。枫茜继续说道。

「还不止如此呢。所有的脉络都不会永恒存在,也不会永恒消失。不管是脉络

树上的脉络,还是之外的细小脉络,都是如此。存在的脉络可能断开消失,消失的

脉络也可能再次连接。万物皆处在永恒的变化之中,人与人之间的羁绊也是。或许

有一天,我们与大家的羁绊也会如同脉络一样,被无情地斩断。或许我们也终将成

为“枫音乡的过客”。或许这一切都会是必然,是枫树的灵魂所决定的……」

枫茜的眼角泛起了几滴晶莹剔透的泪珠。恒逸看着这样的枫茜,将她抱入怀中。

「别这样想,枫茜。就算脉络断开,也有可能还会有新的脉络树,也还会与枫

树的根相连。这样的话,我们的羁绊仍然存在,只是稍微绕了一些远路而已。无论

如何,我都不会离开你的。因为你是我穷尽一生所寻找的,我的真恋啊!」

两人的目光对上了。枫茜幸福地笑了,把头埋进了恒逸的怀抱。从远方山上的

枫林中,传来了枫的声音。

【问题描述】

不妨假设枫叶上有 n个穴位,穴位的编号为 1 ~  n。有若干条有向的脉络连接

着这些穴位。穴位和脉络组成一个有向无环图——称之为脉络图(例如图 1),穴

位的编号使得穴位 1 没有从其他穴位连向它的脉络,即穴位 1 只有连出去的脉络;

由上面的故事可知,这个有向无环图存在一个树形子图,它是以穴位 1为根的包含

全部n个穴位的一棵树——称之为脉络树(例如图 2和图 3给出的树都是图1给出

的脉络图的子图);值得注意的是,脉络图中的脉络树方案可能有多种可能性,例

如图2和图 3就是图 1给出的脉络图的两个脉络树方案。

脉络树的形式化定义为:以穴位 r 为根的脉络树由枫叶上全部 n个穴位以及 n

-  1 条脉络组成,脉络树里没有环,亦不存在从一个穴位连向自身的脉络,且对于

枫叶上的每个穴位 s,都存在一条唯一的包含于脉络树内的脉络路径,使得从穴位

r 出发沿着这条路径可以到达穴位 s。

现在向脉络图添加一条与已有脉络不同的脉络(注意:连接 2个穴位但方向不

同的脉络是不同的脉络,例如从穴位3到4的脉络与从4到3的脉络是不同的脉络,

因此,图 1 中不能添加从 3 到 4 的脉络,但可添加从 4 到 3 的脉络),这条新脉络

可以是从一个穴位连向自身的(例如,图 1 中可添加从 4 到 4 的脉络)。原脉络图

添加这条新脉络后得到的新脉络图可能会出现脉络构成的环。

请你求出添加了这一条脉络之后的新脉络图的以穴位 1 为根的脉络树方案数。

由于方案可能有太多太多,请输出方案数对 1,000,000,007 取模得到的结果。

Input

输入文件的第一行包含四个整数 n、m、x和y,依次代表枫叶上的穴位数、脉

络数,以及要添加的脉络是从穴位 x连向穴位y的。

接下来 m行,每行两个整数,由空格隔开,代表一条脉络。第 i 行的两个整数

为ui和vi,代表第 i 条脉络是从穴位 ui连向穴位vi的。

Output

输出一行,为添加了从穴位 x连向穴位 y的脉络后,枫叶上以穴位 1 为根的脉

络树的方案数对 1,000,000,007取模得到的结果。

Sample Input

4 4 4 3

1 2

1 3

2 4

3 2

Sample Output

3

HINT

对于所有测试数据,1 <= n <= 100000,n - 1 <= m <= min(200000, n(n – 1) / 2),

1 <= x, y, ui, vi <= n。

正解:树形图+DP+拓扑排序

解题报告:

  PoPoQQQ大爷的solution

  对于未加入之前的图,是一个DAG,而一个DAG的方案数就是除了1之外的所有点的入度连乘。

  而加入了一条边之后,可能会出现环,环的出现就会导致出现非法方案。所以我们的任务就是统计带环的非法方案。

  考虑假设我们已经得到了一个环,那么剩下的图还是可以用连乘来计算方案数,而环是由y到x的一条路径和x->y这条新加入的边组成的,所以我们相当于是统计了y到x的路径条数。

  在拓扑排序的时候可以顺便做一下。转移的话就是总的ans/路径上所有的点的in的连乘,因为这些点的入边已经唯一确定了。

  最后需要特判一下y=1的情况。

//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
using namespace std;
typedef long long LL;
const int MOD = 1000000007;
const int MAXN = 100011;
const int MAXM = 200011;
int n,m,S,T,ecnt,first[MAXN],to[MAXM],next[MAXM],in[MAXN],I[MAXN];
LL ans,f[MAXN],ni[MAXN];
queue<int>q;
inline int getint(){
    int w=0,q=0; char c=getchar(); while((c<‘0‘||c>‘9‘) && c!=‘-‘) c=getchar();
    if(c==‘-‘) q=1,c=getchar(); while (c>=‘0‘&&c<=‘9‘) w=w*10+c-‘0‘,c=getchar(); return q?-w:w;
}

inline LL fast_pow(LL x,LL y){
	LL r=1;
	while(y>0) {
		if(y&1) r*=x,r%=MOD;
		x*=x; x%=MOD;
		y>>=1;
	}
	return r;
}

inline void topo_sort(){
	for(int i=1;i<=n;i++) if(in[i]==0) q.push(i); int u;
	f[T]=ans*ni[T]%MOD;
	while(!q.empty()) {
		u=q.front(); q.pop();
		for(int i=first[u];i;i=next[i]) {
			int v=to[i]; in[v]--;
			if(in[v]==0) q.push(v);
			f[v]+=f[u]*ni[v]%MOD; f[v]%=MOD;
		}
	}
	ans-=f[S]; ans%=MOD; ans+=MOD; ans%=MOD;
}

inline void work(){
	n=getint(); m=getint(); S=getint(); T=getint(); int x,y;
	for(int i=1;i<=m;i++) {
		x=getint(); y=getint(); next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y;
		I[y]++; in[y]++;
	}
	I[T]++; ans=1; for(int i=2;i<=n;i++) ans*=I[i],ans%=MOD;
	if(T==1) { printf("%lld",ans); return ; }
	for(int i=1;i<=n;i++) ni[i]=fast_pow(I[i],MOD-2);//注意入度的底数!
	topo_sort();
	printf("%lld",ans);
}

int main()
{
    work();
    return 0;
}

  

时间: 2024-10-25 15:54:48

BZOJ4011 [HNOI2015]落忆枫音的相关文章

luogu3244 bzoj4011 HNOI2015 落忆枫音

这道题目题面真长,废话一堆. 另外:这大概是我第一道独立做出来的HNOI2011年以后的题目了吧.像我水平这么差的都能做出来,dalao您不妨试一下自己想想? 题目大意:给一个DAG,其中1号点没有入度,现在新加入一条不重复的边,使得它可能有环.求它的生成子图个数,使得子图正好包含N-1条边且1号点与其它的所有点连通. 题目分析: 我们首先要发现这是一个树的结构!有向的树. 分析树的特点,树的父亲只有一个,我们不妨从这里入手. 在这一个生成子图中,谁是谁的父亲? 我们知道1号点一定是root,这

BZOJ 4011: [HNOI2015]落忆枫音( dp )

DAG上有个环, 先按DAG计数(所有节点入度的乘积), 然后再减去按拓扑序dp求出的不合法方案数(形成环的方案数). -------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long l

【BZOJ 4011】 [HNOI2015]落忆枫音

4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 244 Solved: 137 [Submit][Status][Discuss] Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂--我们也不可能再见 到你姐姐吧.」 恒逸给出了一个略微无厘头的回答.枫茜听后笑了笑.

[HNOI2015] 落忆枫音

题目描述 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂......我们也不可能再见到你姐姐吧.」 恒逸给出了一个略微无厘头的回答.枫茜听后笑了笑. 「那你仔细观察过枫叶吗?」 说罢,枫茜伸手,接住了一片飘落的枫叶. 「其实每一片枫叶都是有灵魂的.你看,枫叶上不是有这么多脉络吗?我听说,枫叶上有一些特殊的位置,就和人的穴位一样.脉络都是连接在这些穴位之间的.枫树的灵魂流过每片枫叶

【bzoj4011】落忆枫音

Description 给出一个有n个点和m条边的有向无环图,1号节点入度为0.这个有向无环图存在一个树形子图,是以1号节点为根的包含全部n个点的一棵树.该树形子图可能有多种可能性. 现在向图中加入一条与已有边不同的有向边(连接两个节点但方向不同视为不同的边),这条边可连向自身.原有向无环图添加新边后得到的新图可能会出现环. 求新图中以1为根的树形子图的方案数.(对1000000007取模) Solution 我们可以得到,有向无环图中树形子图的方案数为2号节点到n号节点的入度的乘积. 设新边为

BZOJ 4011 HNOI2015 落忆枫音 拓扑序DP

题目大意:给定一张有向无环图,现在要求加入一条边,求加入后以1为根的树形图个数 首先不考虑加入的这条边,那么这个图是一个DAG 由朱刘算法的推论可知,如果除根节点外每个点都选择一条入边,由于没有环,因此一定会形成一个树形图 因此答案就是∏ni=2degreei 其中degreei表示第i个点的入度 现在加入这条边之后,我们仍然可以套用这个公式,但是这样就会有一些不合法的方案被统计进来,我们需要把这些不合法的方案减掉 一个方案如果不合法,那么一定会形成一个环,而环一定包含新加入的那条边 因此我们减

BZOJ 4011 HNOI2015 落忆枫音 DAG上的dp(实际上重点在于分析)

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4011 题意概述:给出一张N点的DAG(连通),点1的入度为0.现在加一条原图没有的边,问有多少种方案可使这张图变成一棵以1为根的有向树(即每个点的父亲指向自己). N<=100000,M<=min(200000,N(N-1)/2). 实际上这个题主要在分析(感觉终于开始自己做出省选题了). 先看没有加边的情况,yy一下你发现这种情况的答案就是所有rd(入度)不为0的点rd相乘.道理是只

【BZOJ】【4011】【HNOI2015】落忆枫音

拓扑排序+DP 题解:http://blog.csdn.net/PoPoQQQ/article/details/45194103 http://www.cnblogs.com/mmlz/p/4448742.html 通过转化……路径外的$degree_i$的乘积转化成所有点的degree之积除以路径内的,所以用到逆元…… PoPoQQQ的线性筛逆元好神奇啊……>_< OrzOrz 1 /******************************************************

【bzoj4011 hnoi2015】落忆枫音

题目描述 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂......我们也不可能再见到你姐姐吧.」 恒逸给出了一个略微无厘头的回答.枫茜听后笑了笑. 「那你仔细观察过枫叶吗?」 说罢,枫茜伸手,接住了一片飘落的枫叶. 「其实每一片枫叶都是有灵魂的.你看,枫叶上不是有这么多脉络吗?我听说,枫叶上有一些特殊的位置,就和人的穴位一样.脉络都是连接在这些穴位之间的.枫树的灵魂流过每片枫叶