That Nice Euler Circuit

Description:

Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary school Joey heard about the nice story of how Euler started the study about graphs. The problem in that story was - let
me remind you - to draw a graph on a paper without lifting your pen, and finally return to the original position. Euler proved that you could do this if and only if the (planar) graph you created has the following two properties: (1) The graph is connected;
and (2) Every vertex in the graph has even degree.

Joey‘s Euler machine works exactly like this. The device consists of a pencil touching the paper, and a control center issuing a sequence of instructions. The paper can be viewed as the infinite two-dimensional plane; that means you do not need to worry about
if the pencil will ever go off the boundary.

In the beginning, the Euler machine will issue an instruction of the form
(X0, Y0) which moves the pencil to some starting position
(X0, Y0). Each subsequent instruction is also of the form
(X‘, Y‘), which means to move the pencil from the previous position to the new position
(X‘, Y‘), thus draw a line segment on the paper. You can be sure that the new position is different from the previous position for each instruction. At last, the Euler machine will always issue an instruction that
move the pencil back to the starting position (X0,
Y
0). In addition, the Euler machine will definitely not draw any lines that overlay other lines already drawn. However, the lines may intersect.

After all the instructions are issued, there will be a nice picture on Joey‘s paper. You see, since the pencil is never lifted from the paper, the picture can be viewed as an Euler circuit.

Your job is to count how many pieces (connected areas) are created on the paper by those lines drawn by Euler.

Input

There are no more than 25 test cases. Ease case starts with a line containing an integer
N4, which is the number of instructions in the test case. The following
N pairs of integers give the instructions and appear on a single line separated by single spaces. The first pair is the first instruction that gives the coordinates of the starting position. You may assume there are no more
than 300 instructions in each test case, and all the integer coordinates are in the range (-300, 300). The input is terminated when
N is 0.

Output

For each test case there will be one output line in the format

Case x: There are w pieces.,

where x is the serial number starting from 1.

Note: The figures below illustrate the two sample input cases.

Sample Input

5
0 0 0 1 1 1 1 0 0 0
7
1 1 1 5 2 1 2 5 5 1 3 5 1 1
0

Sample Output

Case 1: There are 2 pieces.
Case 2: There are 5 pieces.

题意:给出n个点第一个和最后一个点事相同的。问把这些点依次连接起来能够把这个平面分成多少个区域;

在欧拉定理中:面,边,点的个数满足  面的数量 + 点的数量 - 边的数量 = 2;

那么此题就可以变为求出有多少条线段和多少个点;就可以得出有多少个面;

# include <cstdio>
# include <cmath>
# include <iostream>
# include <algorithm>
using namespace std;

const double eps=1e-10;
int dcmp( double x)
{
    if(fabs(x)< eps)  return 0;
    else  return x > 0 ? 1 : -1;
}

struct Point
{
    double x,y;
    Point (double x=0,double y=0) :x(x),y(y)  { }
};

typedef Point Vector;

Vector operator + (const Vector& a,const Vector& b) { return Vector(a.x+b.x,a.y+b.y);}
Vector operator - (const Point& a,const Point &b) { return Vector(a.x-b.x,a.y-b.y);}
Vector operator * (const Vector& a,double p)       { return Vector(a.x*p,a.y*p);}

bool operator < (const Point &a,const Point &b)
{
    return a.x < b.x || (a.x ==b.x &&a.y< b.y);
}

bool operator == (const Point &a,const Point &b)
{
    return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y) ==0 ;
}

double Dot(const Vector &a,const Vector& b)    { return a.x*b.x+a.y*b.y; }
double Cross(const Vector& a,const Vector& b)  { return a.x*b.y-b.x*a.y; }

Point GetLineIntersection(const Point& P,const Vector& v,const Point& Q,const Vector & w)
{
    Vector u=P-Q;
    double t=Cross(w,u)/Cross(v,w);
    return P+v*t;
}

bool SegmentProperIntersection(const Point a1,const Point a2,const Point b1,const Point b2)
{
    double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
    c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
    return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)< 0;
}

bool OnSegment(const Point p,const Point a1,const Point a2)
{
    //根据向量自己画画就知道了;
    return dcmp(Cross(a1-p,a2-p))==0 && dcmp(Dot(a1-p,a2-p))<0;}

const int maxn=320;
Point p[maxn],v[maxn*maxn];

int main( )
{
    int n,kase=0;
    while(cin>>n&&n)
    {
        int i,j;
        for(i=0;i<n;i++)
        {
            scanf("%lf%lf",&p[i].x,&p[i].y);    v[i]=p[i];
        }
        n--;
        int c=n,e=n;
        //判断两两线段是否相交;把交点存入数组;
        for(i=0;i<n;i++)
            for(j=i+1;j<n;j++)
                if(SegmentProperIntersection(p[i],p[i+1],p[j],p[j+1]) )
                v[c++]=GetLineIntersection(p[i], p[i+1]-p[i] , p[j], p[j+1]-p[j] );
        sort(v,v+c);
        //去掉重复的点;
        c = unique (v,v+c)-v;
        //判断点是否在线段上;
        for(i=0;i<c;i++)
            for(j=0;j<n;j++)
            if(OnSegment(v[i],p[j],p[j+1]))   e++;
        printf("Case %d: There are %d pieces.\n", ++kase, e+2-c);
    }
    return 0;
}
时间: 2024-10-05 23:08:57

That Nice Euler Circuit的相关文章

poj2284 That Nice Euler Circuit(欧拉公式)

题目链接:poj2284 That Nice Euler Circuit 欧拉公式:如果G是一个阶为n,边数为m且含有r个区域的连通平面图,则有恒等式:n-m+r=2. 欧拉公式的推广: 对于具有k(k≥2)个连通分支的平面图G,有:n-m+r=k+1. 题意:给出连通平面图的各顶点,求这个欧拉回路将平面分成多少区域. 题解:根据平面图的欧拉定理“n-m+r=2”来求解区域数r. 顶点个数n:两两线段求交点,每个交点都是图中的顶点. 边数m:在求交点时判断每个交点落在第几条边上,如果一个交点落在

UVA LIVE-3263 - That Nice Euler Circuit

画一个顶点为偶数的封闭的二维图,当然.这个图能够自交,给出画的过程中的一些轨迹点.求出这个图把二次元分成了几部分,比如三角形把二次元分成了两部分. 这个的话,有图中顶点数+部分数-棱数=2的定律,这是核心思想.也就是所谓的欧拉定律拓扑版,好吧,事实上细致想想也是可以想出这个规律来的. 做出这题纯属意外,因为给的点的坐标全是用整数表示,为了不用考虑精度问题,一開始.我就想仅仅用这些点.就是说不再算出其他交点之类的,就把答案算出, 由于当前轨迹与之前轨迹无非三种情况:规范与不规范相交,不相交 不相交

【UVA】1342 - That Nice Euler Circuit(几何+欧拉定理)

E 为边数 ,V 为点数,F为面数 那么 F = E + 2 - V(其中包括了一个无限大的面) 这道题被自己的习惯坑了一下#define MAXD 300 + 10 和#define MAXD 310 是不一样的 14113235 1342 That Nice Euler Circuit Accepted C++ 0.082 2014-08-29 15:12:20 自己的代码: #include<cstdio> #include<cstring> #include<iost

UVALive - 3263 That Nice Euler Circuit (几何)

UVALive - 3263 That Nice Euler Circuit (几何) ACM 题目地址: UVALive - 3263 That Nice Euler Circuit 题意: 给出一个点,问连起来后的图形把平面分为几个区域. 分析: 欧拉定理有:设平面图的顶点数.边数.面数分别V,E,F则V+F-E=2 大白的题目,做起来还是很有技巧的. 代码: /* * Author: illuz <iilluzen[at]gmail.com> * File: LA3263.cpp * C

UVa 10735 (混合图的欧拉回路) Euler Circuit

题意: 给出一个图,有的边是有向边,有的是无向边.试找出一条欧拉回路. 分析: 按照往常的思维,遇到混合图,我们一般会把无向边拆成两条方向相反的有向边. 但是在这里却行不通了,因为拆成两条有向边的话,就表示这个边能“在两个相反方向各经过一次”. 而题意是这个边只能经过一次. 假设图中存在欧拉回路,则所有点的出度out(i) 等于 入度in(i) 不妨这样,先将所有的无向边任意定向,对于out(u) > in(u)的点,可以将已经定向的无向边u->v反向为v->u,这样out(u) - i

POJ2284 That Nice Euler Circuit (欧拉公式)(计算几何 线段相交问题)

That Nice Euler Circuit Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 1977   Accepted: 626 Description Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary school Joey heard about

UVALive - 3263 - That Nice Euler Circuit (计算几何~~)

UVALive - 3263 That Nice Euler Circuit Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu Submit Status Description Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary sch

LA 3236 That Nice Euler Circuit(欧拉定理)

That Nice Euler Circuit Timelimit:3.000 seconds Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary school Joey heard about the nice story of how Euler started the study about graphs. The proble

UVA 10735 Euler Circuit

题意:求混合图的欧拉路径. 这题的困难之处在于无向边只能用一次,相当于一个方向未定的有向边. 首先用并查集判断图的连通性,(直接计数O(1),做1395 Slim Span学到的技巧). 我们知道有向图的欧拉路径存在的充要条件是最多两个点的入度不等于出度,而且相差为1,这题不需要考虑这种情况,只需要所有点的入度等于出度就行了. 对于无向边,一开始可以随意确定一个方向.这样不能保证所有点的入度等于出度,但是可以想办法调整. 比如说u->v,那么如果改变方向的话,就相当于把一个出度运输给了v. 这让