KMP算法学习(详解)

kmp算法又称“看毛片”算法,是一个效率非常高的字符串匹配算法。不过由于其难以理解,所以在很长的一段时间内一直没有搞懂。虽然网上有很多资料,但是鲜见好的博客能简单明了地将其讲清楚。在此,综合网上比较好的几个博客(参见最后),尽自己的努力争取将kmp算法思想和实现讲清楚。

kmp算法完成的任务是:给定两个字符串O和f,长度分别为n和m,判断f是否在O中出现,如果出现则返回出现的位置。常规方法是遍历a的每一个位置,然后从该位置开始和b进行匹配,但是这种方法的复杂度是O(nm)。kmp算法通过一个O(m)的预处理,使匹配的复杂度降为O(n+m)。

kmp算法思想

我们首先用一个图来描述kmp算法的思想。在字符串O中寻找f,当匹配到位置i时两个字符串不相等,这时我们需要将字符串f向前移动。常规方法是每次向前移动一位,但是它没有考虑前i-1位已经比较过这个事实,所以效率不高。事实上,如果我们提前计算某些信息,就有可能一次前移多位。假设我们根据已经获得的信息知道可以前移k位,我们分析移位前后的f有什么特点。我们可以得到如下的结论:

  • A段字符串是f的一个前缀。
  • B段字符串是f的一个后缀。
  • A段字符串和B段字符串相等。

所以前移k位之后,可以继续比较位置i的前提是f的前i-1个位置满足:长度为i-k-1的前缀A和后缀B相同。只有这样,我们才可以前移k位后从新的位置继续比较。

所以kmp算法的核心即是计算字符串f每一个位置之前的字符串的前缀和后缀公共部分的最大长度(不包括字符串本身,否则最大长度始终是字符串本身)。获得f每一个位置的最大公共长度之后,就可以利用该最大公共长度快速和字符串O比较。当每次比较到两个字符串的字符不同时,我们就可以根据最大公共长度将字符串f向前移动(已匹配长度-最大公共长度)位,接着继续比较下一个位置。事实上,字符串f的前移只是概念上的前移,只要我们在比较的时候从最大公共长度之后比较f和O即可达到字符串f前移的目的。

next数组计算

理解了kmp算法的基本原理,下一步就是要获得字符串f每一个位置的最大公共长度。这个最大公共长度在算法导论里面被记为next数组。在这里要注意一点,next数组表示的是长度,下标从1开始;但是在遍历原字符串时,下标还是从0开始。假设我们现在已经求得next[1]、next[2]、……next[i],分别表示长度为1到i的字符串的前缀和后缀最大公共长度,现在要求next[i+1]。由上图我们可以看到,如果位置i和位置next[i]处的两个字符相同(下标从零开始),则next[i+1]等于next[i]加1。如果两个位置的字符不相同,我们可以将长度为next[i]的字符串继续分割,获得其最大公共长度next[next[i]],然后再和位置i的字符比较。这是因为长度为next[i]前缀和后缀都可以分割成上部的构造,如果位置next[next[i]]和位置i的字符相同,则next[i+1]就等于next[next[i]]加1。如果不相等,就可以继续分割长度为next[next[i]]的字符串,直到字符串长度为0为止。由此我们可以写出求next数组的代码(Java版):

 1 public int[] getNext(String b)
 2 {
 3     int len=b.length();
 4     int j=0;
 5
 6     int next[]=new int[len+1];//next表示长度为i的字符串前缀和后缀的最长公共部分,从1开始
 7     next[0]=next[1]=0;
 8
 9     for(int i=1;i<len;i++)//i表示字符串的下标,从0开始
10     {//j在每次循环开始都表示next[i]的值,同时也表示需要比较的下一个位置
11         while(j>0&&b.charAt(i)!=b.charAt(j))j=next[j];
12         if(b.charAt(i)==b.charAt(j))j++;
13         next[i+1]=j;
14     }
15
16     return next;
17 }

上述代码需要注意的问题是,我们求取的next数组表示长度为1到m的字符串f前缀的最大公共长度,所以需要多分配一个空间。而在遍历字符串f的时候,还是从下标0开始(位置0和1的next值为0,所以放在循环外面),到m-1为止。代码的结构和上面的讲解一致,都是利用前面的next值去求下一个next值。

字符串匹配

计算完成next数组之后,我们就可以利用next数组在字符串O中寻找字符串f的出现位置。匹配的代码和求next数组的代码非常相似,因为匹配的过程和求next数组的过程其实是一样的。假设现在字符串f的前i个位置都和从某个位置开始的字符串O匹配,现在比较第i+1个位置。如果第i+1个位置相同,接着比较第i+2个位置;如果第i+1个位置不同,则出现不匹配,我们依旧要将长度为i的字符串分割,获得其最大公共长度next[i],然后从next[i]继续比较两个字符串。这个过程和求next数组一致,所以可以匹配代码如下(java版):

 1 public void search(String original, String find, int next[]) {
 2     int j = 0;
 3     for (int i = 0; i < original.length(); i++) {
 4         while (j > 0 && original.charAt(i) != find.charAt(j))
 5             j = next[j];
 6         if (original.charAt(i) == find.charAt(j))
 7             j++;
 8         if (j == find.length()) {
 9             System.out.println("find at position " + (i - j));
10             System.out.println(original.subSequence(i - j + 1, i + 1));
11             j = next[j];
12         }
13     }
14 }

上述代码需要注意的一点是,每次我们得到一个匹配之后都要对j重新赋值。

复杂度

kmp算法的复杂度是O(n+m),可以采用均摊分析来解答,具体可参考算法导论。

参考资料

1.     kmp算法小结

2.     kmp算法详解

3.     kmp算法

4.     kmp算法的理解与实现

开源实现

如果大家想实际用该算法,给大家提供一个实例:java记事本

PS:

最后再给大家补几个图,希望有助于大家理解。

科赫曲线

自身结构重复展开

时间: 2024-10-09 21:52:22

KMP算法学习(详解)的相关文章

各大公司广泛使用的在线学习算法FTRL详解

各大公司广泛使用的在线学习算法FTRL详解 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression),而传统的批量(batch)算法无法有效地处理超大规模的数据集和在线数据流,google先后三年时间(2010年-2013年)从理论研究到实际工程化实现的FTRL(Follow-the-regularized-Leader)算法,在处理诸如逻辑回归之类的带非光滑正则化项(例如1范数,做模型复杂度控制和稀疏化)的凸优化问题上性能非常出色,据闻国内各大互联网公司都第一时间应

各种音视频编解码学习详解

各种音视频编解码学习详解 媒体业务是网络的主要业务之间.尤其移动互联网业务的兴起,在运营商和应用开发商中,媒体业务份量极重,其中媒体的编解码服务涉及需求分析.应用开发.释放license收费等等.最近因为项目的关系,需要理清媒体的codec,比较搞的是,在豆丁网上看运营商的规范 标准,同一运营商同样的业务在不同文档中不同的要求,而且有些要求就我看来应当是历史的延续,也就是现在已经很少采用了.所以豆丁上看不出所以然,从 wiki上查.中文的wiki信息量有限,很短,而wiki的英文内容内多,删减版

(转)KMP字符串模式匹配详解

(转)KMP字符串模式匹配详解 个人觉得这篇文章是网上的介绍有关KMP算法更让人容易理解的文章了,确实说得很“详细”,耐心地把它看完肯定会有所收获的--,另外有关模式函数值next[i]确实有很多版本啊,在另外一些面向对象的算法描述书中也有失效函数 f(j)的说法,其实是一个意思,即next[j]=f(j-1)+1,不过还是next[j]这种表示法好理解啊: KMP字符串模式匹配详解 KMP字符串模式匹配通俗点说就是一种在一个字符串中定位另一个串的高效算法.简单匹配算法的时间复杂度为O(m*n)

Mahout推荐算法API详解

前言 用Mahout来构建推荐系统,是一件既简单又困难的事情.简单是因为Mahout完整地封装了“协同过滤”算法,并实现了并行化,提供非常简单的API接口:困难是因为我们不了解算法细节,很难去根据业务的场景进行算法配置和调优. 本文将深入算法API去解释Mahout推荐算法底层的一些事. 1. Mahout推荐算法介绍 Mahoutt推荐算法,从数据处理能力上,可以划分为2类: 单机内存算法实现 基于Hadoop的分步式算法实现 1). 单机内存算法实现 单机内存算法实现:就是在单机下运行的算法

Javascript学习--------详解window窗口对象

对话框: 警告对话框:alert(): 语法:window.alert(src)或者alert(src); 询问回答对话框:confirm(): 语法:window.confrim(question)或者confrim(question); 单击确认,返回true: 单击取消,返回false 提示对话框:prompt(): 语法:window.prompt([showtxt],[defaultTxt])或者prompt([showtxt],[defaultTxt]); 单击确认,返回输入的文本:

javascript常用经典算法实例详解

javascript常用经典算法实例详解 这篇文章主要介绍了javascript常用算法,结合实例形式较为详细的分析总结了JavaScript中常见的各种排序算法以及堆.栈.链表等数据结构的相关实现与使用技巧,需要的朋友可以参考下 本文实例讲述了javascript常用算法.分享给大家供大家参考,具体如下: 入门级算法-线性查找-时间复杂度O(n)--相当于算法界中的HelloWorld ? 1 2 3 4 5 6 7 8 9 10 //线性搜索(入门HelloWorld) //A为数组,x为要

Isolation Forest算法实现详解

本文介绍的 Isolation Forest 算法原理请参看我的博客:Isolation Forest异常检测算法原理详解,本文中我们只介绍详细的代码实现过程. 1.ITree的设计与实现 首先,我们参看原论文中的ITree的构造伪代码: 这里写图片描述 1.1 设计ITree类的数据结构 由原论文[1,2]以及上述伪代码可知,ITree是一个二叉树,并且构建ITree的算法采用的是递归构建.同时构造的结束条件是: 当前节点的高度超过了算法设置的阈值 l ;当前子树只包含一个叶节点:当前子树的所

[转]Mahout推荐算法API详解

Mahout推荐算法API详解 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等. 从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占

分享一位国外大牛写的不规则物体像素级碰撞检测算法及详解

最近在做一个有关投篮的小游戏,需要用到像素级碰撞检测,as3自带的hitTestObject显然无法满足需要.网上搜寻了一下,在9ria挖坟挖到两篇好文章: 分享一个超高效的不规则物体碰撞检测的类~~ [Lii]超高效的不规则物体碰撞检测<效率优化> 第一篇文章介绍了一位国外大牛写的不规则物体像素级碰撞检测算法,原理是用bitmap绘制两对象不透明区域,利用混合模式计算出两对象的相交区域. 第二篇文章则在该算法的基础上进行了效率的优化,原理是判断出两对象发生hitTestObject碰撞后,将