C语言面向对象编程(五):单链表实现(转)

这里实现的单链表,可以存储任意数据类型,支持增、删、改、查找、插入等基本操作。(本文提供的是完整代码,可能有些长。)

下面是头文件:

 1 #ifndef SLIST_H
 2 #define SLIST_H
 3
 4 #ifdef __cplusplus
 5 extern "C" {
 6 #endif
 7
 8 #define NODE_T(ptr, type) ((type*)ptr)
 9
10 struct slist_node {
11     struct slist_node * next;
12 };
13
14 typedef void (*list_op_free_node)(struct slist_node *node);
15 /*
16  * return 0 on hit key, else return none zero
17  */
18 typedef int (*list_op_key_hit_test)(struct slist_node *node, void *key);
19
20 struct single_list {
21     /* all the members must not be changed manually by callee */
22     struct slist_node * head;
23     struct slist_node * tail;
24     int size; /* length of the list, do not change it manually*/
25
26     /* free method to delete the node
27      */
28     void (*free_node)(struct slist_node *node);
29     /*
30      * should be set by callee, used to locate node by key(*_by_key() method)
31      * return 0 on hit key, else return none zero
32      */
33     int (*key_hit_test)(struct slist_node *node, void *key);
34
35     struct single_list *(*add)(struct single_list * list, struct slist_node * node);
36     struct single_list *(*insert)(struct single_list * list, int pos, struct slist_node *node);
37     /* NOTE: the original node at the pos will be freed by free_node */
38     struct single_list *(*replace)(struct single_list *list, int pos, struct slist_node *node);
39     struct slist_node *(*find_by_key)(struct single_list *, void * key);
40     struct slist_node *(*first)(struct single_list* list);
41     struct slist_node *(*last)(struct single_list* list);
42     struct slist_node *(*at)(struct single_list * list, int pos);
43     struct slist_node *(*take_at)(struct single_list * list, int pos);
44     struct slist_node *(*take_by_key)(struct single_list * list, void *key);
45     struct single_list *(*remove)(struct single_list * list, struct slist_node * node);
46     struct single_list *(*remove_at)(struct single_list *list, int pos);
47     struct single_list *(*remove_by_key)(struct single_list *list, void *key);
48     int (*length)(struct single_list * list);
49     void (*clear)(struct single_list * list);
50     void (*deletor)(struct single_list *list);
51 };
52
53 struct single_list * new_single_list(list_op_free_node op_free, list_op_key_hit_test op_cmp);
54
55 #ifdef __cplusplus
56 }
57 #endif
58
59 #endif // SLIST_H  

struct single_list 这个类,遵循我们前面介绍的基本原则,不再一一细说。有几点需要提一下:

  • 我们定义了 slist_node 作为链表节点的基类,用户自定义的节点,都必须从 slist_node 继承
  • 为了支持节点( node )的释放,我们引入一个回调函数 list_op_free_node ,这个回调需要在创建链表时传入
  • 为了支持查找,引入另外一个回调函数 list_op_key_hit_test

好了,下面看实现文件:

  1 #include "slist.h"
  2 #include <malloc.h>
  3
  4 static struct single_list * _add_node(struct single_list *list, struct slist_node *node)
  5 {
  6
  7     if(list->tail)
  8     {
  9         list->tail->next = node;
 10         node->next = 0;
 11         list->tail = node;
 12         list->size++;
 13     }
 14     else
 15     {
 16         list->head = node;
 17         list->tail = node;
 18         node->next = 0;
 19         list->size = 1;
 20     }
 21
 22     return list;
 23 }
 24
 25 static struct single_list * _insert_node(struct single_list * list, int pos, struct slist_node *node)
 26 {
 27     if(pos < list->size)
 28     {
 29         int i = 0;
 30         struct slist_node * p = list->head;
 31         struct slist_node * prev = list->head;
 32         for(; i < pos; i++)
 33         {
 34             prev = p;
 35             p = p->next;
 36         }
 37         if(p == list->head)
 38         {
 39             /* insert at head */
 40             node->next = list->head;
 41             list->head = node;
 42         }
 43         else
 44         {
 45             prev->next = node;
 46             node->next = p;
 47         }
 48
 49         if(node->next == 0) list->tail = node;
 50         list->size++;
 51     }
 52     else
 53     {
 54         list->add(list, node);
 55     }
 56
 57     return list;
 58 }
 59
 60 static struct single_list * _replace(struct single_list * list, int pos, struct slist_node *node)
 61 {
 62     if(pos < list->size)
 63     {
 64         int i = 0;
 65         struct slist_node * p = list->head;
 66         struct slist_node * prev = list->head;
 67         for(; i < pos; i++)
 68         {
 69             prev = p;
 70             p = p->next;
 71         }
 72         if(p == list->head)
 73         {
 74             /* replace at head */
 75             node->next = list->head->next;
 76             list->head = node;
 77         }
 78         else
 79         {
 80             prev->next = node;
 81             node->next = p->next;
 82         }
 83
 84         if(node->next == 0) list->tail = node;
 85
 86         if(list->free_node) list->free_node(p);
 87         else free(p);
 88     }
 89
 90     return list;
 91 }
 92
 93 static struct slist_node * _find_by_key(struct single_list *list, void * key)
 94 {
 95     if(list->key_hit_test)
 96     {
 97         struct slist_node * p = list->head;
 98         while(p)
 99         {
100             if(list->key_hit_test(p, key) == 0) return p;
101             p = p->next;
102         }
103     }
104     return 0;
105 }
106
107 static struct slist_node *_first_of(struct single_list* list)
108 {
109     return list->head;
110 }
111
112 static struct slist_node *_last_of(struct single_list* list)
113 {
114     return list->tail;
115 }
116
117 static struct slist_node *_node_at(struct single_list * list, int pos)
118 {
119     if(pos < list->size)
120     {
121         int i = 0;
122         struct slist_node * p = list->head;
123         for(; i < pos; i++)
124         {
125             p = p->next;
126         }
127         return p;
128     }
129
130     return 0;
131 }
132
133 static struct slist_node * _take_at(struct single_list * list, int pos)
134 {
135     if(pos < list->size)
136     {
137         int i = 0;
138         struct slist_node * p = list->head;
139         struct slist_node * prev = p;
140         for(; i < pos ; i++)
141         {
142             prev = p;
143             p = p->next;
144         }
145         if(p == list->head)
146         {
147             list->head = p->next;
148             if(list->head == 0) list->tail = 0;
149         }
150         else if(p == list->tail)
151         {
152             list->tail = prev;
153             prev->next = 0;
154         }
155         else
156         {
157             prev->next = p->next;
158         }
159
160         list->size--;
161
162         p->next = 0;
163         return p;
164     }
165
166     return 0;
167 }
168
169 static struct slist_node * _take_by_key(struct single_list * list, void *key)
170 {
171     if(list->key_hit_test)
172     {
173         struct slist_node * p = list->head;
174         struct slist_node * prev = p;
175         while(p)
176         {
177             if(list->key_hit_test(p, key) == 0) break;
178             prev = p;
179             p = p->next;
180         }
181
182         if(p)
183         {
184             if(p == list->head)
185             {
186                 list->head = p->next;
187                 if(list->head == 0) list->tail = 0;
188             }
189             else if(p == list->tail)
190             {
191                 list->tail = prev;
192                 prev->next = 0;
193             }
194             else
195             {
196                 prev->next = p->next;
197             }
198
199             list->size--;
200
201             p->next = 0;
202             return p;
203         }
204     }
205     return 0;
206 }
207
208 static struct single_list *_remove_node(struct single_list * list, struct slist_node * node)
209 {
210     struct slist_node * p = list->head;
211     struct slist_node * prev = p;
212     while(p)
213     {
214         if(p == node) break;
215         prev = p;
216         p = p->next;
217     }
218
219     if(p)
220     {
221         if(p == list->head)
222         {
223             list->head = list->head->next;
224             if(list->head == 0) list->tail = 0;
225         }
226         else if(p == list->tail)
227         {
228             prev->next = 0;
229             list->tail = prev;
230         }
231         else
232         {
233             prev->next = p->next;
234         }
235
236         if(list->free_node) list->free_node(p);
237         else free(p);
238
239         list->size--;
240     }
241     return list;
242 }
243
244 static struct single_list *_remove_at(struct single_list *list, int pos)
245 {
246     if(pos < list->size)
247     {
248         int i = 0;
249         struct slist_node * p = list->head;
250         struct slist_node * prev = p;
251         for(; i < pos ; i++)
252         {
253             prev = p;
254             p = p->next;
255         }
256         if(p == list->head)
257         {
258             list->head = p->next;
259             if(list->head == 0) list->tail = 0;
260         }
261         else if(p == list->tail)
262         {
263             list->tail = prev;
264             prev->next = 0;
265         }
266         else
267         {
268             prev->next = p->next;
269         }
270
271         if(list->free_node) list->free_node(p);
272         else free(p);
273
274         list->size--;
275     }
276
277     return list;
278 }
279
280 static struct single_list *_remove_by_key(struct single_list *list, void *key)
281 {
282     if(list->key_hit_test)
283     {
284         struct slist_node * p = list->head;
285         struct slist_node * prev = p;
286         while(p)
287         {
288             if(list->key_hit_test(p, key) == 0) break;
289             prev = p;
290             p = p->next;
291         }
292
293         if(p)
294         {
295             if(p == list->head)
296             {
297                 list->head = list->head->next;
298                 if(list->head == 0) list->tail = 0;
299             }
300             else if(p == list->tail)
301             {
302                 prev->next = 0;
303                 list->tail = prev;
304             }
305             else
306             {
307                 prev->next = p->next;
308             }
309
310             if(list->free_node) list->free_node(p);
311             else free(p);
312
313             list->size--;
314         }
315     }
316
317     return list;
318 }
319
320 static int _length_of(struct single_list * list)
321 {
322     return list->size;
323 }
324
325 static void _clear_list(struct single_list * list)
326 {
327     struct slist_node * p = list->head;
328     struct slist_node * p2;
329     while(p)
330     {
331         p2 = p;
332         p = p->next;
333
334         if(list->free_node) list->free_node(p2);
335         else free(p2);
336     }
337
338     list->head = 0;
339     list->tail = 0;
340     list->size = 0;
341 }
342
343 static void _delete_single_list(struct single_list *list)
344 {
345     list->clear(list);
346     free(list);
347 }
348
349 struct single_list * new_single_list(list_op_free_node op_free, list_op_key_hit_test op_cmp)
350 {
351     struct single_list *list = (struct single_list *)malloc(sizeof(struct single_list));
352     list->head = 0;
353     list->tail = 0;
354     list->size = 0;
355     list->free_node = op_free;
356     list->key_hit_test = op_cmp;
357
358     list->add = _add_node;
359     list->insert = _insert_node;
360     list->replace = _replace;
361     list->find_by_key = _find_by_key;
362     list->first = _first_of;
363     list->last = _last_of;
364     list->at = _node_at;
365     list->take_at = _take_at;
366     list->take_by_key = _take_by_key;
367     list->remove = _remove_node;
368     list->remove_at = _remove_at;
369     list->remove_by_key = _remove_by_key;
370     list->length = _length_of;
371     list->clear = _clear_list;
372     list->deletor = _delete_single_list;
373
374     return list;
375 }  

上面的代码就不一一细说了,下面是测试代码:

  1 /* call 1 or N arguments function of struct */
  2 #define ST_CALL(THIS,func,args...) ((THIS)->func(THIS,args))
  3
  4 /* call none-arguments function of struct */
  5 #define ST_CALL_0(THIS,func) ((THIS)->func(THIS))
  6
  7 struct int_node {
  8     struct slist_node node;
  9     int id;
 10 };
 11
 12 struct string_node {
 13     struct slist_node node;
 14     char name[16];
 15 };
 16
 17
 18 static int int_free_flag = 0;
 19 static void _int_child_free(struct slist_node *node)
 20 {
 21     free(node);
 22     if(!int_free_flag)
 23     {
 24         int_free_flag = 1;
 25         printf("int node free\n");
 26     }
 27 }
 28
 29 static int _int_slist_hittest(struct slist_node * node, void *key)
 30 {
 31     struct int_node * inode = NODE_T(node, struct int_node);
 32     int ikey = (int)key;
 33     return (inode->id == ikey ? 0 : 1);
 34 }
 35
 36 static int string_free_flag = 0;
 37 static void _string_child_free(struct slist_node *node)
 38 {
 39     free(node);
 40     if(!string_free_flag)
 41     {
 42         string_free_flag = 1;
 43         printf("string node free\n");
 44     }
 45 }
 46
 47 static int _string_slist_hittest(struct slist_node * node, void *key)
 48 {
 49     struct string_node * sn = (struct string_node*)node;
 50     return strcmp(sn->name, (char*)key);
 51 }
 52
 53 void int_slist_test()
 54 {
 55     struct single_list * list = new_single_list(_int_child_free, _int_slist_hittest);
 56     struct int_node * node = 0;
 57     struct slist_node * bn = 0;
 58     int i = 0;
 59
 60     printf("create list && nodes:\n");
 61     for(; i < 100; i++)
 62     {
 63         node = (struct int_node*)malloc(sizeof(struct int_node));
 64         node->id = i;
 65         if(i%10)
 66         {
 67             list->add(list, node);
 68         }
 69         else
 70         {
 71             list->insert(list, 1, node);
 72         }
 73     }
 74     printf("create 100 nodes end\n----\n");
 75     printf("first is : %d, last is: %d\n----\n",
 76            NODE_T( ST_CALL_0(list, first), struct int_node )->id,
 77            NODE_T( ST_CALL_0(list, last ), struct int_node )->id);
 78
 79     assert(list->size == 100);
 80
 81     printf("list traverse:\n");
 82     for(i = 0; i < 100; i++)
 83     {
 84         if(i%10 == 0) printf("\n");
 85         bn = list->at(list, i);
 86         node = NODE_T(bn, struct int_node);
 87         printf(" %d", node->id);
 88     }
 89     printf("\n-----\n");
 90
 91     printf("find by key test, key=42:\n");
 92     bn = list->find_by_key(list, (void*)42);
 93     assert(bn != 0);
 94     node = NODE_T(bn, struct int_node);
 95     printf("find node(key=42), %d\n------\n", node->id);
 96
 97     printf("remove node test, remove the 10th node:\n");
 98     bn = list->at(list, 10);
 99     node = NODE_T(bn, struct int_node);
100     printf("  node 10 is: %d\n", node->id);
101     printf("  now remove node 10\n");
102     list->remove_at(list, 10);
103     printf(" node 10 was removed, check node 10 again:\n");
104     bn = list->at(list, 10);
105     node = NODE_T(bn, struct int_node);
106     printf("  now node 10 is: %d\n------\n", node->id);
107
108     printf("replace test, replace node 12 with id 1200:\n");
109     bn = list->at(list, 12);
110     node = NODE_T(bn, struct int_node);
111     printf("  now node 12 is : %d\n", node->id);
112     node = (struct int_node*)malloc(sizeof(struct int_node));
113     node->id = 1200;
114     list->replace(list, 12, node);
115     bn = list->at(list, 12);
116     node = NODE_T(bn, struct int_node);
117     printf("  replaced, now node 12 is : %d\n----\n", node->id);
118
119     printf("test remove:\n");
120     ST_CALL(list, remove, bn);
121     bn = ST_CALL(list, find_by_key, (void*)1200);
122     assert(bn == 0);
123     printf("test remove ok\n----\n");
124     printf("test remove_by_key(90):\n");
125     ST_CALL(list, remove_by_key, (void*)90);
126     bn = ST_CALL(list, find_by_key, (void*)90);
127     assert(bn == 0);
128     printf("test remove_by_key(90) end\n----\n");
129     printf("test take_at(80):\n");
130     bn = ST_CALL(list, take_at, 80);
131     printf("  node 80 is: %d\n", NODE_T(bn, struct int_node)->id);
132     free(bn);
133     printf("test take_at(80) end\n");
134
135     int_free_flag = 0;
136     printf("delete list && nodes:\n");
137     list->deletor(list);
138     printf("delete list && nodes end\n");
139     printf("\n test add/insert/remove/delete/find_by_key/replace...\n");
140 }
141
142 void string_slist_test()
143 {
144     struct single_list * list = new_single_list(_string_child_free, _string_slist_hittest);
145 }
146
147 void slist_test()
148 {
149     int_slist_test();
150     string_slist_test();
151 }  

测试代码里主要演示了:

  • 自定义链表节点类型
  • 定义释放回调
  • 定义用于查找的 hit test 回调
  • 如何创建链表
  • 如何使用( add 、remove 、 take 、find 、 insert 等)

相信到这里,单链表的使用已经不成问题了。

以单链表为基础,可以进一步实现很多数据结构,比如树(兄弟孩子表示法),比如 key-value 链表等等。接下来根据例子的需要,会择机进行展示。

转自:http://blog.csdn.net/foruok/article/details/18594177

时间: 2024-10-06 16:52:49

C语言面向对象编程(五):单链表实现(转)的相关文章

c语言面向对象编程

#include <stdio.h> #include <stdlib.h> /*  *  *   1.  简单实现模拟虚函数表实现c语言面向对象的设计  *   2.  为实现:  函数注册调用  *   3.            通过文件实现函数注册调用  */ //封装 typedef struct _Shape Shape; //模拟虚函数表 struct ShapeClass {     void (*construct)(Shape* self); //构造函数   

R语言面向对象编程:S3和R6

一.基于S3的面向对象编程 基于S3的面向对象编程是一种基于泛型函数(generic function)的实现方式. 1.S3函数的创建 S3对象组成:generic(generic FUN)+method(generic.class FUN) 泛型函数(generic)创建示例: get_n_elements <- function(x,...) { UseMethod("get_n_elements") } 通常用UseMethod()函数定义一个泛型函数的名称,通过传入参数

【C语言数据结构】循环单链表

CircleLinkList.h #ifndef CIRCLE_LINK_LIST #define CIRCLE_LINK_LIST //链表节点 typedef struct _CircleLinkListNode {     struct _CircleLinkListNode *next; }CircleLinkListNode; //循环单链表 typedef void CircleLinkList; /*  * 创建循环单链表  * @return 返回循环单链表的指针  */ Cir

【C语言数据结构】静态单链表

StaticLinkLinst.h #ifndef STATIC_LINKLIST_H #define STATIC_LINKLIST_H typedef void StaticLinkListNode;    //静态单链表节点 typedef void StaticLinkList;        //静态单链表 /*  * 创建静态单链表  * @param capacity 静态单链表的最大容量  * @return 返回静态单链表的指针  */ StaticLinkList* Stat

c语言有头循环单链表

/************************************************************************* > File Name: singleLineTable.c > Author: zshh0604 > Mail: [email protected] > Created Time: 2014年10月15日 星期三 11时34分08秒 **************************************************

编程实现单链表的排序

node *sort(node *head) { node *p, *p2, *p3; int n; int temp; n = length(head); if (head == NULL || head->next == NULL) return head; p = head; for (int j = 1; j < n; ++j) { p = head; for (int i = 0; i < n - j; ++i) { if (p->data>p->next-&

go语言面向编程

面向对象编程篇 go语言面向对象编程,并不像传统面向对象编程中有继承.封装.多态.函数重载等概念: go语言面向对象编程非常的 简单优雅,,结构(struct).方法(method).接口(interface)浑然一体,共同支持着 面向对象编程 一.结构体 struct go语言支持基本类型组合功能-struct结构类型,struct结构类型看似简单,实则能实现很强大的复杂功能1. 定义 type <name> struct {} type Rect struct { x, y float64

C++面试笔记--单链表

1.编程实现单链表删除节点.       解析:如果删除的是头节点,如下图: 则把head指针指向头节点的下一个节点.同时free p1,如下图所示: 如果删除的是中间节点,如下图所示: 则用p2的next指向p1的next同时,free p1 ,如下图所示: 2.编写程序实现单链表的插入.       解析:单链表的插入,如下图所示: 如果插入在头结点以前,则p0的next指向p1,头节点指向p0,如下图所示: 如果插入中间节点,如下图所示: 则先让p2的next指向p0,再让p0指向p1,如

数据结构之线性表-链式存储之单链表(一)

本人文笔较差,语文从来不及格,基础不好,写此类文章仅供自己学习,理解队列及其他知识,高手大神请略过.参考书籍 <数据结构与算法分析-Java语言描述 1.1 单链表简介 线性表的最大的缺点就是插入和删除操作需要移动大量的元素,这是它在内存中的连续存储结构造成的.为了弥补这2个缺点,就出现了链表,即线性表的链式存储. 链表是由一系列的几点组成,这些节点不必在内存中相连.这就意味着元素可以存在内存未被占用的任意位置.如图 这个存储可以想象成元素在内存中成三维空间存储,他们之间可没有像数组那样的下标标