poj 1144 Network(割点 入门)

Network

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 10907   Accepted: 5042

Description

A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N . No two places have the same number. The lines are bidirectional and always connect together two places and in each place the lines end in a telephone exchange. There is one telephone exchange in each place. From each place it is
possible to reach through lines every other place, however it need
not be a direct connection, it can go through several exchanges. From
time to time the power supply fails at a place and then the exchange
does not operate. The officials from TLC realized that in such a case it
can happen that besides the fact that the place with the failure is
unreachable, this can also cause that some other places cannot connect
to each other. In such a case we will say the place (where the failure

occured) is critical. Now the officials are trying to write a
program for finding the number of all such critical places. Help them.

Input

The
input file consists of several blocks of lines. Each block describes
one network. In the first line of each block there is the number of
places N < 100. Each of the next at most N lines contains the number
of a place followed by the numbers of some places to which there is a
direct line from this place. These at most N lines completely describe
the network, i.e., each direct connection of two places in the network
is contained at least in one row. All numbers in one line are separated

by one space. Each block ends with a line containing just 0. The last block has only one line with N = 0;

Output

The output contains for each block except the last in the input file one line containing the number of critical places.

Sample Input

5
5 1 2 3 4
0
6
2 1 3
5 4 6 2
0
0

Sample Output

1
2

Hint

You need to determine the end of one line.In order to make it‘s easy to determine,there are no extra blank before the end of each line.

Source

Central Europe 1996

模板~

  1 #include <iostream>
  2 #include <cstdio>
  3 #include <cstdlib>
  4 #include <cstring>
  5 #include <algorithm>
  6 #define ll long long
  7 using namespace std;
  8 const int MAXN = 12000;
  9 const int MAXM = 120000;
 10 struct Edge
 11 {
 12     int to,next;
 13     bool cut;
 14 } edge[MAXM];
 15 int head[MAXN],tot;
 16 int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];
 17 int Index,top;
 18 bool Instack[MAXN],cut[MAXN];
 19 int bridge,add_block[MAXN];
 20
 21 void addedge(int u,int v)
 22 {
 23     edge[tot].to = v;
 24     edge[tot].next = head[u];
 25     edge[tot].cut = false;
 26     head[u] = tot++;
 27 }
 28 void Tarjan(int u,int pre)
 29 {
 30     int v;
 31     Low[u] = DFN[u] = ++Index;
 32     Stack[top++] = u;
 33     Instack[u] = true;
 34     int son = 0;
 35     for(int i = head[u]; i != -1; i = edge[i].next)
 36     {
 37         v = edge[i].to;
 38         if(v == pre)
 39             continue;
 40         if( !DFN[v] )
 41         {
 42             son++;
 43             Tarjan(v,u);
 44             if(Low[u] > Low[v]) Low[u] = Low[v];
 45
 46             if(Low[v] > DFN[u])
 47             {
 48                 bridge++;
 49                 edge[i].cut = true;
 50                 edge[i^1].cut = true;
 51             }
 52
 53             if(u != pre && Low[v] >= DFN[u])
 54             {
 55                 cut[u] = true;
 56                 add_block[u]++;
 57             }
 58         }
 59         else if(Instack[v] && Low[u] >  DFN[v])
 60             Low[u] = DFN[v];
 61     }
 62     if(u == pre && son > 1) cut[u] = true;
 63     if(u == pre) add_block[u] = son -1;
 64     Instack[u] = false;
 65     top--;
 66 }
 67 void solve(int N)
 68 {
 69     memset(DFN,0,sizeof(DFN));
 70     memset(Instack,false,sizeof(Instack));
 71     memset(add_block,0,sizeof(add_block));
 72     memset(cut,false,sizeof(cut));
 73     Index = top = bridge =  0;
 74     for(int i = 1; i <= N; i++)
 75         if( !DFN[i])
 76             Tarjan(i,i);
 77     int ans = 0;
 78     for(int i = 1; i <= N; i++)
 79         if(cut[i])
 80             ans++;
 81     printf("%d\n",ans);
 82 }
 83 void init()
 84 {
 85     tot = 0;
 86     memset(head,-1,sizeof(head));
 87 }
 88 int main(void)
 89 {
 90     int n;
 91     int maze[120][120];
 92     while(scanf("%d",&n),n)
 93     {
 94         char ss[3005];
 95         init();
 96         memset(maze,0,sizeof(maze));
 97         getchar();
 98         while(cin.getline(ss,3000),ss[0] != ‘0‘)
 99         {
100             int u = 0,cur = 0,l = (int)strlen(ss);
101             while(ss[cur] != ‘ ‘ && cur < l)
102             {
103                 u*= 10;
104                 u += ss[cur] - ‘0‘;
105                 cur++;
106             }
107             int v;
108             while(ss[cur] && cur < l)
109             {
110                 v = 0;
111                 while(ss[cur] != ‘ ‘ && cur < l)
112                 {
113                     v*= 10;
114                     v += ss[cur] - ‘0‘;
115                     cur++;
116                 }
117                 maze[u][v] = maze[v][u] = 1;
118                 cur++;
119             }
120         }
121         for(int i = 1; i <= n; i++)
122             for(int j = 1; j < i; j++)
123                 if(maze[i][j])
124                 {
125                     addedge(i,j);
126                     addedge(j,i);
127                 }
128         solve(n);
129     }
130     return 0;
131 }
时间: 2024-11-03 14:40:54

poj 1144 Network(割点 入门)的相关文章

poj 1144 Network(割点)

题目链接: http://poj.org/problem?id=1144 思路分析:该问题要求求出无向联通图中的割点数目,使用Tarjan算法即可求出无向联通图中的所有的割点,算法复杂度为O(|V| + |E|): 代码如下: #include <cstdio> #include <vector> #include <cstring> #include <iostream> using namespace std; const int MAX_N = 100

POJ 1144 Network(无向图连通分量求割点)

题目地址:POJ 1144 求割点.推断一个点是否是割点有两种推断情况: 假设u为割点,当且仅当满足以下的1条 1.假设u为树根,那么u必须有多于1棵子树 2.假设u不为树根.那么(u,v)为树枝边.当Low[v]>=DFN[u]时. 然后依据这两句来找割点就能够了. 代码例如以下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include &

POJ 1144 Network(强连通分量求割点)

题目地址:POJ 1144 求割点.判断一个点是否是割点有两种判断情况: 如果u为割点,当且仅当满足下面的1条 1.如果u为树根,那么u必须有多于1棵子树 2.如果u不为树根,那么(u,v)为树枝边,当Low[v]>=DFN[u]时. 然后根据这两句来找割点就可以了. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <

求无向图的割点 (poj 1144 Network)

割点 :去掉该点后原来的图不连通(出现好几个连通分量),该点被称为割点. 注意删除某点意味着和该点关联的边也全部删除 求割点的伪代码 DFS(v1,father): dfn[v1] = low[v1] = ++dfsClock vis[v1] = true child = 0 for each egde(v1,v2) in E: if(vis[v2] == false) : //(v1,v2)是父子边 DFS(v2,v1) child++ low[v1] = Min(low[v1],low[v2

poj 1144 Network【双连通分量求割点总数】

Network Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11042   Accepted: 5100 Description A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N

poj 1144 Network 无向图求割点

Network Description A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N . No two places have the same number. The lines are bidirectional and always connect

poj 3694 Network (桥入门)

1 /******************************************** 2 Network(POJ 3694) 3 http://poj.org/problem?id=3694 4 桥入门题 + LCA(树中最小公共祖先) 5 做这题必须要会用邻接表(做这题才学会),因为 6 给的边有重边,用vector不好记录重边. 7 8 ********************************************/ 9 10 #include<iostream> 11

poj 1144 Network

Network 题意:输入n(n < 100)个点,不一定是连通图,问有多少个割点? 割点:删除某个点之后,图的联通分量增加. 思路:dfs利用时间戳dfs_clock的特性,点u的low函数low[u]代表以u为子树所得连到的最上面的祖先的时间戳. 即当点u存在一个子节点v,而low[v] >= pre[u]时,u就为割点:且割点要在最后判断,不能直接在iscut[] = true;处自增.因为cc_cnt代表的是当前的节点,而该节点可能有多个子节点,这样会导致重复计算. 直接使用了stri

图论(无向图的割顶):POJ 1144 Network

Network Description A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N . No two places have the same number. The lines are bidirectional and always connect