割点算法
• 在一个无向连通图中,如果删除某个顶点后,图不再连通(即任意两点之间不能相互到达),我们称这样的顶点为割点(或者称割顶)。
判断一个顶点是不是割点除了从定义,还可以从DFS(深度优先遍历)的角度出发。我们先通过DFS定义两个概念。
假设DFS中我们从顶点U访问到了顶点V(此时顶点V还未被访问过),那么我们称顶点U为顶点V的父顶点,V为U的孩子顶点。在顶点U之前被访问过的顶点,我们就称之为U的祖先顶点。
显然如果顶点U的所有孩子顶点可以不通过父顶点U而访问到U的祖先顶点,那么说明此时去掉顶点U不影响图的连通性,U就不是割点。相反,如果顶点U至少存在一个孩子顶点,必须通过父顶点U才能访问到U的祖先顶点,那么去掉顶点U后,顶点U的祖先顶点和孩子顶点就不连通了,说明U是一个割点。
上图中的箭头表示DFS访问的顺序(而不表示有向图),对于顶点D而言,D的孩子顶点可以通过连通区域1红色的边回到D的祖先顶点C(此时C已被访问过),所以此时D不是割点。
上图中的连通区域2中的顶点,必须通过D才能访问到D的祖先顶点,所以说此时D为割点。再次强调一遍,箭头仅仅表示DFS的访问顺序,而不是表示该图是有向图。
这里我们还需要考虑一个特殊情况,就是DFS的根顶点(一般情况下是编号为0的顶点),因为根顶点没有祖先顶点。其实根顶点是不是割点也很好判断,如果从根顶点出发,一次DFS就能访问到所有的顶点,那么根顶点就不是割点。反之,如果回溯到根顶点后,还有未访问过的顶点,需要在邻接顶点上再次进行DFS,根顶点就是割点。
Tarjan算法的实现细节
在具体实现Tarjan算法上,我们需要在DFS(深度优先遍历)中,额外定义两个数组dfn[],low[]。
4.1 num数组
num数组的下标表示顶点的编号,数组中的值表示该顶点在DFS中的遍历顺序(或者说时间戳),每访问到一个未访问过的顶点,访问顺序的值(时间戳)就增加1。子顶点的num值一定比父顶点的num值大(但不一定恰好大1,比如父顶点有两个及两个以上分支的情况)。在访问一个顶点后,它的dfn的值就确定下来了,不会再改变。
4.2 low数组
low数组的下标表示顶点的编号,数组中的值表示DFS中该顶点不通过父顶点能访问到的祖先顶点中最小的顺序值(或者说时间戳)。
每个顶点初始的low值和dfn值应该一样,在DFS中,我们根据情况不断更新low的值。
假设由顶点U访问到顶点V。当从顶点V回溯到顶点U时,
如果
num[v] < low[u]
那么
low[u] = num[v]
如果顶点U还有它分支,每个分支回溯时都进行上述操作,那么顶点low[u]就表示了不通过顶点U的父节点所能访问到的最早祖先节点。
4.4 一个具体的例子
现在我们来看一个例子,模仿程序计算各个顶点的num值和low值。下图中蓝色实线箭头表示已访问过的路径,无箭头虚线表示未访问路径。已访问过的顶点用黄色标记,未访问的顶点用白色标记,DFS当前正在处理的顶点用绿色表示。带箭头的蓝色虚线表示DFS回溯时的返回路径。
基本思路:
假如我们在dfs时访问到了u点,此时图就会被u点分割成为两部分。一部分是已经被访问过的点,另一部分是没有被访问过的点。如果u点是割点,那么剩下的没有被访问过的点中至少有一个点在不经过u点的情况下,是无论如何再也回不到已经访问过的点了。假如到了u后,图中还有顶点v是没有访问过的点,如何判断v在不经过u的情况下是否还能回到之前访问过的任意一个点?u是v的父亲,而之前访问过的顶点就是祖先。也就是如何检测v在不经过父亲u的情况下还能否回到祖先。那就是对v再进行一次dfs,但此次遍历不经过u,看能否回到祖先。不能u即为割点。
我们需要一个数组low来记录每个顶点在不经过父顶点时,能够回到的最小“时间戳”。
对于某个顶点u,如果存在至少一个顶点v(u的儿子),使得low[v]>=num[u],即不能回到祖先,那么u点为割点。
参考资料
[1] 小地盘, 图的割点算法vs割边算法
[2] Trent, 求无向图联通图的割点
[3] GeeksforGeeks, Articulation Points (or Cut Vertices) in a Graph.
原文地址:https://www.cnblogs.com/sunbines/p/8883887.html