[Arxiv1706] Few-Example Object Detection with Model Communication 论文笔记

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Helvetica Neue"; color: #323333 }
p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333; min-height: 15.0px }
li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
span.s1 { text-decoration: underline }
span.s2 { }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }
ul.ul3 { list-style-type: square }

https://arxiv.org/pdf/1706.08249.pdf

Few-Example Object Detection with Model Communication,Xuanyi Dong, Liang Zheng, Fan Ma, Yi Yang, Deyu Meng

亮点

  • 本文仅仅通过每个类别3-4个bounding box标注即可实现物体检测,并与其它使用大量training examples的方法性能可比
  • 主要方法是:multi-modal learning (多模型同时训练) + self-paced learning (curriculum learning)

相关工作

这里介绍几个比较容易混淆的概念,以及与他们相关的方法

  • 弱监督物体检测:数据集的标签是不可靠的,如(x,y),y对于x的标记是不可靠的。这里的不可靠可以是标记不正确,多种标记,标记不充分,局部标记等。
    • 标签是图像级别的类别标签[7][8][9][10][11][18][30][31][32][33][34]
  • 半监督物体检测:半监督学习使用大量的未标记数据,以及同时使用标记数据,来进行模式识别工作。
    • 一些训练样本只有类别标签,另外一些样本有详细的物体框和类别标注[4][5][6]
      • 需要大量标注 (e.g., 50% of the full annotations)
    • 每个类别只有几个物体框标注(Few-Example Object Detection with Model Communication)[12][35]
      • 和few-shot learning 的区别:是否使用未标注数据学习
    • 通过视频挖掘位置标注,此类方法主要针对会移动的物体[2][3][29][1]
  • Webly supervised learning for object detection: reduce the annotation cost by leveraging web data

方法

Basic detector: Faster RCNN & RFCN

Object proposal method: selective search & edge boxes

Annotations: when we randomly annotate approximately four images for each class, an image may contain several objects, and we annotate all the object bounding boxes.

参数更新
更新vj:对上述损失函数进行求导,可以得到vj的解

对同一张图像i同一个模型j,如果有多个样本使得vj=1,则只选择使Lc最小的那个样本置为1,其他置为0。gamma促使模型之间共享信息,因为vj为1时,阈值变大,图像更容易被选择到。

更新wj:与其它文章方法相同

更新yuj:为更新yuj我们需要从一组bounding box找到满足以下条件的解,

很难直接找到最优化的解。文中采用的方案是:将所有模型预测出的结果输入nms,并通过阈值只保留分数高的结果,余下的组成yuj。

去除难例:we employ a modified NMS (intersection/max(area1,area2)) to filter out the nested boxes, which usually occurs when there are multiple overlapping objects. If there are too many boxes (≥ 4) for one specific class or too many classes (≥ 4) in the image, this image will be removed. Images in which no reliable pseudo objects are found are filtered out.

实验

Compared with the-state-of-the-art (4.2 images per class is annotated)

  • VOC 2007: -1.1mAP, correct localization +0.9% compared with [21]
  • VOC 2012: -2.5mAP compared with [21], correct localization +9.8%
  • ILSVRC 2013: -2.4mAP compared with [21]
  • COCO 2014: +1.3 mAP compared with [22]

[20] V. Kantorov, M. Oquab, M. Cho, and I. Laptev, “Contextlocnet: Context-aware deep network models for weakly supervised localization,” in European Conference on Computer Vision, 2016.
[21] A. Diba, V. Sharma, A. Pazandeh, H. Pirsiavash, and L. Van Gool, “Weakly supervised cascaded convolutional networks,” 2017
[22] Y. Zhu, Y. Zhou, Q. Ye, Q. Qiu, and J. Jiao, “Soft proposal networks for weakly supervised object localization,” in International Conference on Computer Vision, 2017.

Ablation study

  • VOC 2007: +4.1 mAP compared with model ensemble
  • k number of labeled images per class; w/ image labels: image-level supervision incorporated

  

不足

虽然localization有一定准确率,但是难例图片漏检比较多(也就是说few example classification效果不好)。

原文地址:https://www.cnblogs.com/Xiaoyan-Li/p/8604816.html

时间: 2024-11-05 13:05:03

[Arxiv1706] Few-Example Object Detection with Model Communication 论文笔记的相关文章

Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 2017 This paper use GAN to handle the issue of small object detection which is a very hard problem in general object detection. As shown in the followin

Object Detection with Discriminatively Trained Part Based Models

P. Felzenszwalb, R. Girshick, D. McAllester, D. RamananObject Detection with Discriminatively Trained Part Based ModelsIEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 9, Sep. 2010 读本文,不是因为DPM,而是因为训练SVM的hard negative minin

论文笔记:Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks

文章: http://arxiv.org/abs/1506.01497 源码:坐等.... 目录: Region Proposal Networks Translation-Invariant Anchors A Loss Function for Learning Region Proposals Optimization Sharing Convolutional Features for Region Proposal and Object Detection Implementation

TensorFlow使用object detection训练并识别自己的模型

使用object detection训练并识别自己的模型 1.安装tensorflow(version>=1.4.0) 2.部署tensorflow models - 在这里下载 - 解压并安装 - 解压后重命名为models复制到tensorflow/目录下 - 在linux下 - 进入tensorflow/models/research/目录,运行protoc object_detection/protos/*.proto --python_out=. - 在~/.bashrc file.中

第三十一节,使用谷歌Object Detection API进行目标检测

Object Detection API是谷歌开放的一个内部使用的物体识别系统.2016年 10月,该系统在COCO识别挑战中名列第一.它支持当前最佳的实物检测模型,能够在单个图像中定位和识别多个对象.该系统不仅用于谷歌于自身的产品和服务,还被推广至整个研究社区. 一.代码位置与内置的模型 1.Object Detection Object Detection模块的位置与slim的位置相近,同在github.com 中TensorFlow 的models\research目录下.类似slim,

第三十四节,目标检测之谷歌Object Detection API源码解析

我们在第三十二节,使用谷歌Object Detection API进行目标检测.训练新的模型(使用VOC 2012数据集)那一节我们介绍了如何使用谷歌Object Detection API进行目标检测,以及如何使用谷歌提供的目标检测模型训练自己的数据.在训练自己的数据集时,主要包括以下几步: 制作自己的数据集,注意这里数据集在进行标注时,需要按照一定的格式.然后调object_detection\dataset_tools下对应的脚本生成tfrecord文件.如下图,如果我们想调用create

(不断更新)关于显著性检测的调研-Salient Object Detection: A Survey

<Salient Object Detection: A Survey>作者:Ali Borji.Ming-Ming Cheng.Huaizu Jiang and Jia Li 基本按照文章中文献出现的顺序. 一.L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis," IEEE TPAMI, 1998. 一个用于快速场景分析

Object Detection with 10 lines of code - Image AI

To perform object detection using ImageAI, all you need to do is Install Python on your computer system Install ImageAI and its dependencies 3. Download the Object Detection model file 4. Run the sample codes (which is as few as 10 lines) Now let's g

TensorFlow object detection API

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_pets.md 1. 获取数据Oxford-IIIT Pets Dataset # From tensorflow/models/research/ wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz wget http://www.robo