On a staircase, the i
-th step has some non-negative cost cost[i]
assigned (0 indexed).
Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.
Example 1:
Input: cost = [10, 15, 20] Output: 15 Explanation: Cheapest is start on cost[1], pay that cost and go to the top.
Example 2:
Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] Output: 6 Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].
Note:
cost
will have a length in the range[2, 1000]
.- Every
cost[i]
will be an integer in the range[0, 999]
.
解题思路:
最简单的动态规划,dp[i]代表到达这个楼梯的最小代价
- class Solution {
- public:
- int minCostClimbingStairs(vector<int>& cost) {
- if(cost.size()==0) return 0;
- if(cost.size()==1) return cost[0];
- vector<int> dp;
- int n=cost.size();
- dp.reserve(n+1);
- dp[0]=0;
- dp[1]=0;
- for(int i=2;i<=n;i++){
- dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
- }
- return dp[n];
- }
- };
原文地址:https://www.cnblogs.com/liangyc/p/8847703.html
时间: 2024-10-08 16:34:41