补充(代码)-入门神经网络-Python 实现(下)

回顾

紧接着上篇, 整到了, MES的公式和代码的实现.

\(MSE = \frac {1}{n} \sum\limits_{i=1}^n (y_i - \hat y_i)^2\)

n 表示样本数, 这里为 4

y 表示要预测的变量, 这里是 性别

训练的约束, 就是使得 MSE 的值尽可能小. -> 求解参数

MSE 的工作机制, 举个栗子, 假设网络的纵输出是 0, 也就是预测所有的 小伙伴都是 妹子.

姓名 \(y_i\) (真实值) \(\hat y_i\) (预测值) \((y_i - \hat y_i)\)
youge 1 0 1
share 1 0 1
naive 0 0 0
beyes 0 0 0

\(MSE = \frac {1}{4} (1 + 1 + 0 + 1) = 0.5\)

BP算法本质 - 求导链式法则

现在继续...

始终要明确我们的目标: 最小化神经网络的损失 这个损失呢, 本质也就是一个关于 权重和偏置 的函数

如图所示:

则本例的损失函数可以这样参数化表示为:

\(L(w_1, w_2, w_3, w_4, w_5, w_6, b1, b_2, b_3)\)

现在来考虑对 w 进行优化, 假设要优化 \(w_1\) (即当 \(w_1\) 变化时, L 会如何变化), 也就是: \(\frac {\partial L}{\partial w_1}\)

为了简化一波问题, 假设数据集中就只有一个兄弟.

姓名 \(y_1\) \(\hat y_1\) (\(y_1 -\hat y_1\))
youge 1 0 1

则此时的 MSE = \((y_1 -\hat y_1)^2 = (1- \hat y_1)^2\)

要计算 \(\frac {\partial L}{\partial w_1}\) 根据网络的 反向 方向 (输出 -> 输入), 对应选取相应的中间变量, 这样能求出来呀. 根据求导链式法则:

\(\frac {\partial L}{\partial w_1} = \frac {\partial L}{\partial \hat y_1} * \frac {\partial \hat y_1}{\partial w_1}\)

由本例数据, 已知 \(L = (1- \hat y_1)^2\) , 上面公式的第一部分就可以求出来了:

\(\frac {\partial L} {\partial y_1} = \frac {\partial (1- \hat y_1)^2} {\partial y_1} = -2(1- \hat y_1)\)

然后是 第二部分 \(\frac {\partial \hat y_1}{\partial w_1}\) 观察图中的相关变量, 可看到 \(h_1, h_2, o_1\) 分别表示该神经元的输出, 即:

\(\hat y_1 = o_1 = f(w_5 h_1 + w_6 h_2 + b_3)\)

继续向后传播....

而我们关心的是 \(w_1\) , 看图中的线路就可知, w1 跟 h2 是没有关系的, 只跟 h1有关, 于是, 再来一波 求导链式法则

$\frac {\partial \hat y_1}{\partial w_1} = \frac {\partial \hat y_1} {\partial h_1} * \frac {\partial h_1}{\partial w_1} $

同样套路, 第一部分

\(\frac {\partial \hat y_1} {\partial h_1} = \frac {f(w_5h_1 + w_6h2 + b_3)} {\partial h_1} = w_5 * [f'(w_5h_1 + w_6h2+b_3)]\)

\(f'(w_5h_1 + w_6h2+b_3)\) 这个其实就 看作 f(x), 里面不论多少项, 都是该 函数的自变量取值而已呀.

第二部分 也是一样滴处理

$\frac {\partial h_1}{\partial w_1} = \frac {f(w_1 x_1 + w_2 x_2 + b_1)} {\partial w_1} = x_1 * [f‘(w_1x_1 +w_2 x_2 + b_1)] $

终于走到输入值啦, 本例这里的 x_1 是身高, x_2 是体重. 这里的 f(x) 就是咱的 激活函数 (映射实值到0-1)

\(f(x) = \frac {1}{1+e^{-x}}\)

之前推导 逻辑回归的时候, 也是用的这个函数哦, 当时有个技巧点是, 其求导为: \(f(x)' = f(x)(1-f(x))\)

利用 分式 求导法则:

\(f(x)' = \frac {0 - (-e^{-x)}}{(1+e^{-x})^2}\)

\(= \frac {1}{1+e^{-x}} * \frac {e^{-x}}{1+e^{-x}}\)

\(=f(x)(1-f(x))\)

这个结果在推导逻辑回归的时候, 非常重要的哦, 求一阶导和二阶导都要用到

小结上边的一波操作, 其实就是一个 求导的链式法则:

\(\frac {\partial L}{\partial w_1} = \frac {\partial L}{\partial \hat y_1} * \frac {\partial \hat y_1}{\partial h_1} * \frac {\partial h_1}{\partial w_1}\)

从网络的方向上来看呢, 是从 output -> input 这样的 反向 误差传递, 这其实就是咱平时说的 BP算法, 而核心就是求导的链式法则而已呀.

所以嘛, 神经网络很多名词, 就是为了唬人, 当你扒开一看, 哦哦, 原来都只是用到一些 基础的数学知识而已

case1: 计算偏导数(Link Rule)

输入(已中心化):

姓名 体重 身高 性别 (y)
youge -2 5 1

输出比较

姓名 \(y_i\) \(\hat y_1\) (\(y_1 -\hat y_1\))
youge 1 0 1

同样, 为计算更加方便, 假设所有的 权重 为1, 所有的偏置为 0

\(h_1 = f(w_1 x_1 + w_2 x_2 + b_1)\)

\(= f(-2 + 5 + 0)\)

\(=f(3) = 0.952\)

继续,

\(h_2 = f(w_3x_1 + w_4 x_2 + b_2)\)

\(= f(-2 + 5 + 0) = h_1 = 0.952\)

继续,

\(o_1 = f(w_5h_1 + w_6h_2 + b3)\)

\(=f(0.952 + 0.952 + 0) = 0.871\)

即本例的网络输出是 \(\hat y_1 = 0.871\) 比较有倾向性的哦, 计算来算一下 \(\frac {\partial L}{\partial w_1}\) 应用上面的结论.

\(\frac {\partial L}{\partial w_1} = \frac {\partial L}{\partial \hat y_1} * \frac {\partial \hat y_1}{\partial h_1} * \frac {\partial h_1}{\partial w_1}\)

同样分解为 3个部分:

\(\frac {\partial L}{\partial \hat y_1} = -2(1- \hat y_1)\)

\(= -2(1-0.871)\)

\(=-0.258\)

继续...

$ \frac {\partial \hat y_1}{\partial h_1} = \frac {f(w_5h_1 + w_6h2 + b_3)} {\partial h_1} = x_1 * [f‘(w_5h_1 + w_6h2+b_3)]$

\(=(-2) * f'(0.952 +0.952+0)\)

\(=(-2) * [f(1.904) \ f(1-1.904)]\)

\(= -0.502\)

继续...

\(\frac {\partial h_1}{\partial w_1} = \frac {f(w_1 x_1 + w_2 x_2 + b_1)} {\partial w_1} = x_1 * [f'(w_1x_1 +w_2 x_2 + b_1)]\)

\(=(-2) * f'(-2 + 5 + 0)\)

\(= -2 *f'(3)\)

\(=-2 * f(3) \ f(1-3)\)

\(=-0.227\)

因此

\(\frac {\partial L}{\partial w_1} = (-0.258) * (-0.502) * (-0.227)\)

\(=-0.029\)

意义: 随着 w_1 的增加, 损失 L 会随着减少.

随机梯度减小(SGD)

本质就是更新参数 w, 沿着 梯度的反方向微调一个步长, 直到算法收敛 或者 是随机选择一个样本, 每次做更迭,, 求解出最优的权重参数向量 w

\(w \leftarrow w_1 - \alpha \ \frac {\partial L}{\partial w_1}\)

这个 \(\alpha\) 也称为 学习率, 也就是步长呗, 或者速率都可以的, 理解上面这句话是最关键的.

为啥是沿着 梯度的反向方, 这个涉及方向导数这一块的, 自己看大一的高数吧, 懒得解释了.

  • \(\frac {\partial L}{\partial w_1}\) 偏导数 大于0, 则说明要将 w_1 调小, 使得 L 变小
  • \(\frac {\partial L}{\partial w_1}\) 偏导数 小于0, 则说明要将 w_1 调大, 使得 L 变小

因为网络中有 多个 w_i 嘛, 如果我们对每一个 w_i 都 进行这样的优化, 则整个网络的损失则会不断下降, 也就意味着网络的预测性能在不断地上升.

训练过程

  • 从数据集中随机选取一个样本, 用 SGD 进行优化, (每次只针对一个样本进行优化)
  • 计算每个权重 w_i 和 偏置 bias, ( 计算 \(\frac {\partial L}{\partial w_1}, \frac {\partial L}{\partial w_2} ... b_1, b_2...\)) 等
  • 更新权重和bias
  • 重复 第一步 .... 直到将所有的样本遍历完

代码实现 - 完整的神经网络

姓名 体重 身高 性别 (y)
youge -2 5 1
share -5 -2 1
naive -23 -11 0
beyes 30 8 0

从网上抄的代码, 这个难度不大代码, 就懒得写了, 学会抄, 和改, 我感觉是提升工作能力的必要能力.

import numpy as np

class Network:
    def __init__(self):
        # 本例的权重w
        self.w1 = np.random.normal()
        self.w2 = np.random.normal()
        self.w3 = np.random.normal()
        self.w4 = np.random.normal()
        self.w5 = np.random.normal()
        self.w6 = np.random.normal()

        # 偏置 bias
        self.b1 = np.random.normal()
        self.b2 = np.random.normal()
        self.b3 = np.random.normal()

    def sigmoid(self, x):
        """激活函数, 映射一个实值到 [0,1]"""
        return 1 / (1 + np.exp(-x))

    def der_of_sigmoid(self, x):
        """激活函数的导数"""
        f = self.sigmoid  # 地址引用
        return f(x) * (1 - f(x))

    @staticmethod
    def mes_loss(y_true, y_predict):
        """
        计算均方误差
        :param y_true, arr 真实样本值组成的array
        :param y_predict, arr 预测样本值组成的array
        :return: float, 总损失
        """
        return ((y_true - y_predict) ** 2).mean()

    def feedforward(self, arr):
        """前向算法, arr是一个2个特征的数组"""
        h1 = self.sigmoid(self.w1 * arr[0] + self.w2 * arr[1] + self.b1)
        h2 = self.sigmoid(self.w3 * arr[0] + self.w4 * arr[1] + self.b2)
        o1 = self.sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3)

    def train(self, data, all_y_true):
        """根据训练数据, 求解参数"""
        learn_rate = 0.1
        max_iter = 1000

        for i in range(max_iter):
            for x, y_true in zip(data, all_y_true):
                sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1
                h1 = self.sigmoid(sum_h1)

                sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2
                h2 = self.sigmoid(sum_h2)

                sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3
                o1 = self.sigmoid(sum_o1)

                y_pred = o1
                d_L_d_ypred = -2 * (y_true - y_pred)

                # o1
                d_ypred_d_w5 = h1 * self.der_of_sigmoid(sum_o1)
                d_ypred_d_w6 = h2 * self.der_of_sigmoid(sum_o1)
                d_ypred_d_b3 = self.der_of_sigmoid(sum_o1)

                d_ypred_d_h1 = self.w5 * self.der_of_sigmoid(sum_o1)
                d_ypred_d_h2 = self.w6 * self.der_of_sigmoid(sum_o1)

                # h1
                d_h1_d_w1 = x[0] * self.der_of_sigmoid(sum_h1)
                d_h1_d_w2 = x[1] * self.der_of_sigmoid(sum_h1)
                d_h1_d_b1 = self.der_of_sigmoid(sum_h1)

                # h2
                d_h1_d_w3 = x[0] * self.der_of_sigmoid(sum_h2)
                d_h1_d_w4 = x[1] * self.der_of_sigmoid(sum_h2)
                d_h1_d_b2 = self.der_of_sigmoid(sum_h2)

                # 应用梯度下降, 更新 权重值 和 bias
                # h1
                self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1
                self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2
                self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1

                # h2
                self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w3
                self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w4
                self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b2

                # o1
                self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_ypred_d_w5
                self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_ypred_d_w6
                self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_ypred_d_b3

                # 计算总的损失 Loss
                if i % 10 == 0:
                    y_preds = np.apply_along_axis(self.feedforward, 1, data)
                    loss = self.mes_loss(all_y_true, y_preds)

                    print("Epoch %d loss: %.3f" % (i, loss))

if __name__ == '__main__':
    # test
    data = np.array([
        [-2, 5],
        [-5, -2],
        [-23, -11],
        [30, 8]
    ])

    all_y_trues = np.array([1, 1, 0, 0])
    # 训练神经网络
    neework = Network()
    neework.train(data, all_y_trues)

没有debug 哦, 绝大部分都不是我自己的代码, 目的是做个笔记参考而已, 参考思路而非真正用这样而代码做生产.

原文地址:https://www.cnblogs.com/chenjieyouge/p/12232733.html

时间: 2024-10-12 15:09:33

补充(代码)-入门神经网络-Python 实现(下)的相关文章

入门神经网络-Python 实现(下)

回顾 紧接着上篇, 整到了, MES的公式和代码的实现. \(MSE = \frac {1}{n} \sum\limits_{i=1}^n (y_i - \hat y_i)^2\) n 表示样本数, 这里为 4 y 表示要预测的变量, 这里是 性别 训练的约束, 就是使得 MSE 的值尽可能小. -> 求解参数 MSE 的工作机制, 举个栗子, 假设网络的纵输出是 0, 也就是预测所有的 小伙伴都是 妹子. 姓名 \(y_i\) (真实值) \(\hat y_i\) (预测值) \((y_i -

【转】使用2to3将代码移植到Python 3

你的位置: Home ? Dive Into Python 3 ? 难度等级: ♦♦♦♦♦ 使用2to3将代码移植到Python 3 ? Life is pleasant. Death is peaceful. It’s the transition that’s troublesome. ?— Isaac Asimov (attributed) 概述 几乎所有的Python 2程序都需要一些修改才能正常地运行在Python 3的环境下.为了简化这个转换过程,Python 3自带了一个叫做2to

《深度学习入门基于Python的理论与实现》PDF代码学习指导

入门神经网络深度学习,推荐学习<深度学习入门:基于Python的理论与实现>,这本书不来虚的,一上来就是手把手教你一步步搭建出一个神经网络,还能把每一步的出处讲明白.理解神经网络,很容易就能入门. 深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术.书中使用Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习. <深度学习入门:基于Python的理论与实现>中文版PDF,314页,带

Python Tensorflow下的Word2Vec代码解释

前言: 作为一个深度学习的重度狂热者,在学习了各项理论后一直想通过项目练手来学习深度学习的框架以及结构用在实战中的知识.心愿是好的,但机会却不好找.最近刚好有个项目,借此机会练手的过程中,我发现其实各大机器学习以及tensorflow框架群里的同学们也有类似的问题.于是希望借项目之手分享一点本人运行过程中的理解以及经验,希望在有益大家工作的基础上抛砖引玉,得到行业内各位专业人士的批评指点,多谢大家支持! 第一章博客我将会分为两个部分,这一部分将讲述Word2Vec在tensorflow中官方提供

手把手入门神经网络:从初等数学的角度初探神经网络

转一篇关于神经网络的小品文 https://mp.weixin.qq.com/s?__biz=MzA4MTA5MjE5Mw==&mid=401758390&idx=1&sn=a870201b307b6531abfe9c571461876e&scene=1&srcid=0122t2d7CyeurEFwtlp2ya3k&pass_ticket=5vlHG30VriwzFjNjxIzDT9YjTp2c0tOsRclaa6RliQEmlEGduKOiY9XcBWb0

鱼C《零基础入门学习Python》10-17节课时知识点总结

第10讲:列表:一个打了激素的数组 1. 列表都可以存放一些什么东西?  我们说 Python 的列表是一个打了激素的数组,如果把数组比喻成集装箱,那么 Python 的列表就是一个大仓库,Ta 可以存放我们已经学习过的任何数据类型. 2. 向列表增加元素有哪些方法?  三种方法想列表增加元素,分别是:append().extend() 和 insert().    3. append() 方法和 extend() 方法都是向列表的末尾增加元素,请问他们有什么区别?  append() 方法是将

boost.python入门教程 ----python 嵌入c++

boost.python 中 python 嵌入c++ 部分,网上找到的中文资料似乎都有些过时了, 如 boost.python学习笔记 http://edyfox.codecarver.org/html/boost_python.html 在boost.python版本2中,提供更加简洁易用的接口,我们可以使用从而 代替原始的PyRun_SimpleString等等python c 转换api. 关于python与C++混合编程,事实上有两个部分 extending   所谓python 程序

Spark 入门(Python、Scala 版)

本文中,我们将首先讨论如何在本地机器上利用Spark进行简单分析.然后,将在入门级水平探索Spark,了解Spark是什么以及它如何工作(希望可以激发更多探索).最后两节将开始通过命令行与Spark进行交互,然后演示如何用Python写Spark应用,并作为Spark作业提交到集群上.同时也会提供相应的 Scala 版本. 1.设置Spark环境 在本机设置和运行Spark非常简单.你只需要下载一个预构建的包,只要你安装了Java 6+和Python 2.6+,就可以在Windows.Mac O

鱼C《零基础入门学习Python》1—9节课时知识点总结

第一节:我和python的第一次亲密接触 0. Python 是什么类型的语言? 答:脚本语言(Scripting language)是电脑编程语言,因此也能让开发者藉以编写出让电脑听命行事的程序.以简单的方式快速完成某些复杂的事情通常是创造脚本语言的重要原则,基于这项原则,使得脚本语言通常比 C语言.C++语言 或 Java 之类的系统编程语言要简单容易.也让脚本语言另有一些属于脚本语言的特性: 语法和结构通常比较简单 学习和使用通常比较简单 通常以容易修改程序的“解释”作为运行方式,而不需要