基于 HTML5 + WebGL 实现 3D 可视化地铁系统

前言

工业互联网,物联网,可视化等名词在我们现在信息化的大背景下已经是耳熟能详,日常生活的交通,出行,吃穿等可能都可以用信息化的方式来为我们表达,在传统的可视化监控领域,一般都是基于 Web SCADA 的前端技术来实现 2D 可视化监控,本系统采用 Hightopo 的 HT for Web 产品来构造轻量化的 3D 可视化场景,该 3D 场景从正面展示了一个地铁站的现实场景,包括地铁的实时运行情况,地铁上下行情况,视频监控,烟雾报警,电梯运行情况等等,帮助我们直观的了解当前的地铁站。

系统中为了帮助用户更直观友好的浏览当前地铁站,提供了三种交互模式:

  • 第一人称模式 -- 操作就类似行人或车在行进的效果,可以通过键盘鼠标控制前进后退。
  • 自动巡检模式 -- 该模式下用户不需要任何操作,场景自动前进后退来巡查当前地铁站的场景。
  • 鼠标操作模式 -- 左键旋转场景,右键平移场景。

本篇文章通过对地铁站可视化场景的搭建,动画代码的实现,交互模式的原理解析,以及主要功能点的实现进行阐述,帮助我们了解如何使用 HT 实现一个简单的地铁站可视化。

预览地址:基于 HTML5 WebGL 的地铁站 3D 可视化系统 http://www.hightopo.com/demo/ht-subway/

界面简介及效果预览

地铁运行效果

地铁从站外开到站内的效果为透明度逐渐增加,速度逐渐降低。

漫游效果

上述为自动巡检的漫游效果,场景自动进行前进旋转。

监控设备交互效果

当我们点击场景中的监控设备时可以查看当前设备的运行情况,运行数据等信息。

场景搭建

该系统中的大部分模型都是通过 3dMax 建模生成的,该建模工具可以导出 obj 与 mtl 文件,在 HT 中可以通过解析 obj 与 mtl 文件来生成 3d 场景中的所有复杂模型,当然如果是某些简单的模型可以直接使用 HT 来绘制,这样会比 obj 模型更轻量化,所以大部分简单的模型都是采用 HT for Web 产品轻量化 HTML5/WebGL 建模的方案,具体的解析代码如下:

 1 // 分别为 obj 文件地址,mtl 文件地址
 2 ht.Default.loadObj(‘obj/metro.obj‘, ‘obj/metro.mtl‘, {
 3     center: true,
 4     // 模型是否居中,默认为 false,设置为 true 则会移动模型位置使其内容居中
 5     r3: [0, -Math.PI / 2, 0],
 6     // 旋转变化参数,格式为 [rx, ry, rz]
 7     s3: [0.15, 0.15, 0.15],
 8     // 大小变化参数,格式为 [sx, sy, sz]
 9     finishFunc: function(modelMap, array, rawS3) {
10         if (modelMap) {
11             ht.Default.setShape3dModel(‘metro‘, array); // 注册一个名字为 metro 的模型
12         }
13     }
14 });

上面通过加载 obj 模型之后注册了一个名字为 metro 的模型,之后如果要使用该模型可以通过以下代码来实现:

1 var node = new ht.Node();
2 node.s({
3     ‘shape3d‘: ‘metro‘
4 });

上面代码新建了一个 node 对象,通过设置 style 对象的 shape3d 属性可以把模型名称为 metro 用到该 node 对象上去,之后便是我们场景中看到的地铁列车模型。

动画代码分析

地铁动画代码的实现分析

场景中地铁的运行是通过 HT 提供的调度插件来实现,调度的具体用法可以参考 HT for Web 的调度手册,该调度主要用于在指定的时间间隔进行函数回调处理,回调函数的第一个参数为 data 图元,也就是 3D 场景中的模型节点,我们可以判断当前 data 是否为我们刚才创建的 metro 那个节点来进行后续的操作,场景中模拟了一个左开的地铁和一个右开的地铁,两辆地铁会交替出现。在 3D 场景中肯定会有坐标系,HT 中是用 x, y, z 来分别表示三个轴,所以地铁的运动肯定是改变地铁在坐标系中的位置来实现地铁的运行,地铁坐标如下图所示:

通过上图可以知道地铁在 3D 场景中的坐标系,如果要实现地铁的移动则只需要将地铁往图中所示红色箭头的方向进行移动,即 x 轴的方向,通过 setX 这个方法不断的修改地铁的位置达到地铁行进的目的,代码中通过 getSpeedByX 以及 getOpacityByX 两个方法来不断获取此时的列车速度以及列车透明度,以下为关键代码实现:

 1 let metroTask = {
 2     interval: 50,
 3     // 每五十秒执行一次
 4     action: (data) = >{ // 即上文所提回调函数
 5         // 判断当时传进来的节点是否为地铁列车节点
 6         if (data === currentMetro) {
 7             // 获取地铁此时的 X 轴位置以及行进的方向
 8             let currentX = data.getX(),
 9             direction = data.a(‘direction‘);
10             // 根据当前的 X 轴位置获取当前的列车速度
11             let speed = this.getSpeedByX(currentX);
12             // 根据当前的 X 轴位置获取当前的列车透明度
13             let opacity = this.getOpacityByX(currentX);
14             // 判断此时 X 轴位置是否超过某个值 即地铁是在某个范围内移动
15             if (Math.abs(currentX) <= 5000) {
16                 // 设置当前的透明度
17                 opacity !== 1 ? currentMetro.s({
18                     ‘shape3d.transparent‘: true,
19                     ‘shape3d.opacity‘: opacity
20                 }) : currentMetro.s({
21                     ‘shape3d.transparent‘: false
22                 });
23                 // 设置当前的 X 轴位置
24                 data.setX(currentX + direction * speed);
25                 // 判断此时地铁的速度为 0,所以此时应该执行开门的动画
26                 if (speed === 0) this.doorAnimation(currentMetro, direction);
27             }
28             // 右方向地铁开到头,进行复位
29             if (currentX > 5000 && direction === 1) {
30                 currentMetro = leftMetro;
31                 currentMetro.setX(5000);
32             }
33             // 左方向地铁开到头,进行复位
34             if (currentX < -5000 && direction === -1) {
35                 currentMetro = rightMetro;
36                 currentMetro.setX( - 5000);
37             }
38         }
39     }
40 };
41 dm3d.addScheduleTask(metroTask);

通过以上代码可以知道地铁在运行的过程中,主要通过修改地铁的 x 轴位置来产生前进的动画,并且需要让地铁在某个区间内进行运动,需要判断边界,而且为了模拟出真实的效果需要根据地铁当前的位置不断获取当前的列车速度以及列车透明度,以下为流程图:

上图所示的为地铁进站时候的流程,当地铁停靠完毕关门后需要进行出站,此时我们只需要把地铁位置重新设置一下不为 0 即可,以下为部分代码实现:

1 currentMetro.setX(direction * 10); // 设置出站列车的位置

当执行上面那句代码之后上方的 metroTask 调度任务执行到 getSpeedByX 这个方法之后获取到的 speed 速度不为 0,因此此时会继续执行地铁行进的动画,此时的速度就是由慢至快,透明度由深至浅。以下为开门动画执行流程:

自动巡检代码的实现分析

系统中自动巡检的实现主要是通过修改 3D 场景中的 eye 以及 center 的值,HT 中提供了 rotatewalk 两个方法来控制视角的旋转以及视角的行进,rotate 方法在非第一人称模式时,旋转是以 center 为中心进行旋转,也就是围绕中心物体旋转,当为第一人称时旋转以 eye 为中心进行旋转,也就是旋转眼睛朝向方向。walk 函数同时改变 eye 和 center 的位置,也就是 eye 和 center 在两点建立的矢量方向上同时移动相同的偏移量。该系统中我没有采用 rotate 函数而是自己实现了视角的旋转,因为原本的 rotate 函数旋转某个角度会马上旋转过去而不会有一个旋转的过程,所以我重新实现了旋转的方法,该系统中视角旋转是通过不断修改 center 的数值来实现,具体实现过程原理如下图所示:

部分实现代码如下:

 1 rotateStep() {
 2     // 即上图辅助点 C
 3     let fromCenter = this.fromCenter;
 4     // 即上图 B 点
 5     let toCenter = this.toCenter;
 6     // 每帧转一度
 7     let rotateValue = this.rotateFrame || Math.PI / 180;
 8     // 辅助点 C 与 B 点之间建立一个方向向量
 9     let centerVector = new ht.Math.Vector2(toCenter.x - fromCenter.x, toCenter.y - fromCenter.y);
10     let centerVectorLength = centerVector.length();
11     // 此时旋转百分比
12     let rotatePercent = rotateValue * this.stepNum / this.curRotateVal;
13     if (rotatePercent >= 1) {
14         rotatePercent = 1;
15         this.stepNum = -2;
16     }
17     let newLength = rotatePercent * centerVectorLength;
18     centerVector.setLength(newLength);
19     let newCenterVector = centerVector.add(fromCenter);
20     // 获取旋转过程中 center 的点信息
21     let newCenterPosition = [newCenterVector.x, this.personHeight, newCenterVector.y];
22     // 设置当前 center 的大小
23     this.g3d.setCenter(newCenterPosition);
24 }

通过上述代码就实现了场景中的视角旋转,并且可以通过修改 rotateValue 的值控制旋转的速度。

电梯动画代码的实现分析

场景中电梯是一个 obj 模型,3D 模型是由最基础的三角形面拼接合成,例如 1 个矩形可以由 2 个三角形构成,1 个立方体由 6 个面即 12 个三角形构成,以此类推更复杂的模型可以由许多的小三角形组合合成。因此 3D 模型定义即为对构造模型的所有三角形的描述,而每个三角形由三个顶点 vertex 构成,每个顶点 vertex 由 x, y, z 三维空间坐标决定,HT 中使用 vs 数组记录构成三角面的所有顶点坐标,所以如果想要让电梯运行起来,只需要把所有的顶点坐标往电梯运行的方向进行平移,以下为部分关键伪代码:

 1 // vs 指的是构成电梯模型所有的三角面顶点坐标数组
 2 // 由于场景中电梯的运行方向为往对角线右上方运动,所以只需要修改 x 轴以及 y 轴坐标值
 3 // xStep yStep 为每次电梯运动的距离
 4 setInterval(() = >{
 5     // i+3 是因为 vs 数组的顺序为 x, y, z 轴 所以每次 i 偏移三个单位大小
 6     for (let i = 0, l = vs.length; i < l; i = i + 3) {
 7         // 该顶点坐标下一个 x 轴坐标的值
 8         let nextX = vs[i] - xStep;
 9         // 该顶点坐标下一个 y 轴坐标的值
10         let nextY = vs[i + 1] + yStep;
11         vs[i] = nextX < -0.5 ? 0.5 - (Math.abs(nextX) - 0.5) : nextX;
12         vs[i + 1] = nextY > 0.5 ? -0.5 + (Math.abs(nextY) - 0.5) : nextY;
13     }
14 },
15 200);

电梯运动动画如下图所示:

监控功能展示及介绍

视频监控

当点击场景中的摄像头之后右侧顶部会显示出当前摄像头的监控画面,以下为实现效果图:

烟雾报警监控

烟雾报警会根据后台实时传递过来的状态值来变换当前烟雾报警模型的颜色,红色为报警状态,以下为实现效果图:

电视列车到站时间监控

日常地铁站中会有专门的电视来展示下一班地铁到站的时间表,该系统中也模拟该效果,不过该系统暂时做了电视的模型,时间暂无对接,以下为效果图:

场景监控交互

3D 场景中交互是比较简单的,主要是点击摄像头展示 2D 监控面板,在 2D 界面中主要是切换三种交互模式,三种交互模式为互斥的关系,以下是 3D 交互注册事件代码:

 1 g3d.mi((e) = >{
 2     let {
 3         g2d,
 4         dm2d
 5     } = this;
 6     // 为点击类型
 7     if (e.kind === ‘clickData‘) {
 8         // data 为当前点击的图元
 9         let data = e.data;
10         // 当前图元的 shape3d 类型
11         let shape3d = data.s(‘shape3d‘);
12         // 判断当前 shape3d 类型是否为摄像头
13         if (shape3d && shape3d.indexOf(‘摄像头‘) > 0) {
14             let cameraPanel = dm2d.getDataByTag(‘cameraPanel‘);
15             // toggle 切换摄像头 2d 面板
16             g2d.isVisible(cameraPanel) ? cameraPanel.s(‘2d.visible‘, false) : cameraPanel.s(‘2d.visible‘, true);
17         }
18     }
19     // 为点击 3d 场景背景类型
20     if (e.kind === ‘clickBackground‘) {
21         let cameraPanel = dm2d.getDataByTag(‘cameraPanel‘);
22         // 隐藏摄像头 2d 面板
23         g2d.isVisible(cameraPanel) && cameraPanel.s(‘2d.visible‘, false);
24     }
25 });

总结

工业互联网将人,数据和机器连接起来,地铁站 3D 可视化系统则是一个很好的展现,HT 的轻量化,数据的可视化,机器的可视化,资产的管理化帮助我们更好的监控。而物联网将通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息,通过与 HT 的结合更好的展现出可视化的优势,当然地铁站还可以与 VR 进行结合,在各地科技展会中我们可以见到各种 VR 场景操作,HT 中也可以结合 VR 设备进行操作,可以戴上设备在地铁站中漫游,让人有身临其境的感觉,由于场景本身的轻量化,所以 VR 场景下的流畅性也是十分的高,让用户不会有头晕的感觉。当然系统本身也可以在移动端运行,以下为移动端运行截图:

程序运行截图:

原文地址:https://www.cnblogs.com/htdaydayup/p/11790920.html

时间: 2024-11-06 21:22:57

基于 HTML5 + WebGL 实现 3D 可视化地铁系统的相关文章

基于 H5 + WebGL 实现 3D 可视化地铁系统

前言 工业互联网,物联网,可视化等名词在我们现在信息化的大背景下已经是耳熟能详,日常生活的交通,出行,吃穿等可能都可以用信息化的方式来为我们表达,在传统的可视化监控领域,一般都是基于 Web SCADA 的前端技术来实现 2D 可视化监控,本系统采用 Hightopo 的 HT for Web 产品来构造轻量化的 3D 可视化场景,该 3D 场景从正面展示了一个地铁站的现实场景,包括地铁的实时运行情况,地铁上下行情况,视频监控,烟雾报警,电梯运行情况等等,帮助我们直观的了解当前的地铁站. 系统中

基于HTML5的燃气3D培训仿真系统

最近上线了的基于HTML5的燃气3D培训仿真系统,以前的老系统是采用基于C++和OpenGL的OpenSceneGraph引擎设计的,OSG引擎性能和渲染效果各方面还是不错的,但因为这次新产品需求要求能运行多移动终端,多年前基于MFC封装OSG的老系统架构也实在该退休了,这年头找能维护MFC这种古董级GUI的靠谱人也非易事. 系统最终采用HT for Web的3D框架实现,项目中的程序员也很高兴有这样的机会终于摆脱维护MFC老系统的宿命,虽然大家都只有C++的开发经验,对HTML/CSS/JS并

基于 HTML5 + WebGL 的 3D 太阳系系统

前言 近年来随着引力波的发现.黑洞照片的拍摄.火星上存在水的证据发现等科学上的突破,以及文学影视作品中诸如<三体>.<流浪地球>.<星际穿越>等的传播普及,宇宙空间中那些原本遥不可及的事物离我们越来越近,人们对未知文明的关注和对宇宙空间的好奇达到了前所未有的高度.站在更高的立足点上,作为人类这个物种中的一员,我们理所应当对我们生活的星球.所在的太阳系有一定的认识,对 8 大行星各自的运行轨道.质量.资源存储量甚至是地形有一定的了解. 本系统采用 Hightopo 的 H

基于 HTML5 WebGL 的 3D 网络拓扑图

在数据量很大的2D 场景下,要找到具体的模型比较困难,并且只能显示出模型的的某一部分,显示也不够直观,这种时候能快速搭建出 3D 场景就有很大需求了.但是搭建 3D 应用场景又依赖于通过 3ds Max 或 Maya 的专业 3D 设计师来建模,Unity 3D 引擎做图形渲染等,这对用户来说都是挑战!不过,HT 一站式的提供了从建模到渲染,包括和 2D 组件呈现和数据融合的一站式解决方案.HT 基于 WebGL 的 3D 技术的图形组件 ht.graph3dView 组件通过对 WebGL 底

基于 HTML5 WebGL 的 3D 智慧隧道漫游巡检

前言 这次为大家展示的是通过 HT for Web 灵活的图型化编辑工具打造的智慧隧道监控系统.通过 HTML5 技术实现了桌面和移动端的跨平台性,同时现实了可视化运维. 这次主要跟大家分享里面的漫游巡检功能,完美进行第一人称视角体验整体结构环境,酷似游戏一样给人一种真实的感受,比平面更加直观,随意游离与虚拟和现实之间. 代码实现 整个场景是由 3D 组件搭建而成的,需要大量的代码,为了简化,我用 HT 封装的 ht.JSONSerializer 来将场景序列化为一个 json 文件.在代码中,

基于HTML5 WebGL实现3D飞机叶轮旋转

在上一篇<基于HT for Web矢量实现2D叶轮旋转>中讲述了叶轮旋转在2D拓扑上的应用,今天我们就来讲讲叶轮旋转在3D上的应用. 在3D拓扑上可以创建各种各样的图元,在HT for Web系统中提供了一些常规的3D模型,但是对于那些比较复杂的模型,比如汽车.人物等模型就无能为力了,那再项目中需要用到这样的模型该肿么办呢?这时候就需要借助专业的3ds Max工具来建模了,然后通过3ds Max工具将模型导出成obj文件,然后再项目中引用导出的obj文件,这样就能成功的使用上复杂的图元了. 在

基于 WebGL 的 HTML5 楼宇自控 3D 可视化监控

前言 智慧楼宇和人们的生活息息相关,楼宇智能化程度的提高,会极大程度的改善人们的生活品质,在当前工业互联网大背景下受到很大关注.目前智慧楼宇可视化监控的主要优点包括: 智慧化 -- 智慧楼宇是一个生态系统,像人一样拥有感知能力.自我判断能力以及控制能力. 绿色化 -- 绿色建筑在耗能.产能以及能源管理方面实现绿色化,楼宇安防实现绿色化监控. 运行成本可控制 -- 基于可持续发展的要求,现代建筑.商业建筑需运行50年以上,建筑在运行过程中能源消耗巨大,如何降低运营成本降低,使建筑在低碳.环保的状态

基于HTML5 WebGL的工业化3D电子围栏

前言 现代工业化的推进在极大加速现代化进程的同时也带来的相应的安全隐患,在传统的可视化监控领域,一般都是基于 Web SCADA 的前端技术来实现 2D 可视化监控,本系统采用 Hightopo 的 HT for Web 产品来构造轻量化的 3D 可视化场景,该 3D 场景从正面展示了一个现代化工厂的现实场景,包括工厂工人的实时位置.电子围栏的范围.现场的安全情况等等,帮助我们直观的了解当前工厂人员的安全状况. 本篇文章通过对工厂可视化场景的搭建和模型的加载,人物实时定位代码的实现.电子围栏和轨

基于 HTML5 WebGL 的智慧城市(一)

前言 中共中央.国务院在今年12月印发了<长江三角洲区域一体化发展规划纲要>(下文简称<纲要>),并发出通知,要求各地区各部门结合实际认真贯彻落实. <纲要>强调,要提升基础设施互联互通水平,打造数字长三角,协同建设新一代信息基础设施,共同推动重点领域智慧应用.大力发展基于物联网.大数据.人工智能的专业化服务,提升各领域融合发展.信息化协同和精细化管理水平.围绕城市公共管理.公共服务.公共安全等领域,支持有条件的城市建设基于人工智能和 5G 物联的城市大脑集群. 城市治