链接:
https://vjudge.net/problem/LightOJ-1058
题意:
There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.
思路:
考虑平行四边形,对角线的中点相交,所以枚举所有中点,相同的点组合数求解。
map爆内存。。。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<utility>
using namespace std;
typedef long long LL;
const int INF = 1e9;
const int MAXN = 1e3+10;
const int MOD = 1e9+7;
struct Node
{
double x, y;
}node[MAXN*MAXN];
int n;
int x[MAXN], y[MAXN];
Node GetMid(int l, int r)
{
return Node{double(x[l]+x[r])/2.0, double(y[l]+y[r])/2.0};
}
bool Cmp(Node a, Node b)
{
if (a.x != b.x)
return a.x < b.x;
return a.y < b.y;
}
int main()
{
int cnt = 0;
int t;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++cnt);
scanf("%d", &n);
for (int i = 1;i <= n;i++)
scanf("%d%d", &x[i], &y[i]);
int tot = 0;
for (int i = 1;i <= n;i++)
{
for (int j = i+1;j <= n;j++)
{
node[++tot] = GetMid(i, j);
}
}
int res = 0;
sort(node+1, node+1+tot, Cmp);
int tmp = 1;
for (int i = 2;i <= tot;i++)
{
if (node[i].x == node[i-1].x && node[i].y == node[i-1].y)
tmp++;
else
{
if (tmp >= 2)
res += 1LL*tmp*(tmp-1)/2;
tmp = 1;
}
if (i == tot && tmp >= 2)
res += 1LL*tmp*(tmp-1)/2;
}
printf(" %d\n", res);
}
return 0;
}
原文地址:https://www.cnblogs.com/YDDDD/p/11886514.html
时间: 2024-10-08 00:39:15