初级模拟电路:3-8 BJT数据规格书(直流部分)

回到目录

本小节我们以2N4123通用型BJT硅基晶体管为例,来介绍如何阅读BJT的数据规格书,点此链接可以阅读和下载2N4123的数据规格书。

1. 总体性能

打开datasheet后,首先看标题:

图3-8.01

可以看到,这是2N4123、2N4124共用的一个datasheet,而且是通用型NPN硅基三极管。然后在在第一页的右侧,厂家给出了管脚识别方法和管体上的文字标记含义:

图3-8.02

在第一页的主体篇幅,数据规格书列出了这个BJT晶体管的所有极限性能,好让使用者先对这个器件有一个总体的印象,下面我们一条条来看:

图3-8.03

• VCEO:基极开路情况下,CE间的击穿电压,在这一栏中,Value一列有两行,上行30V为2N4123的参数;下行25V为2N4124的参数。后面我们都仅以2N4123的参数为例,不再分2种型号分开罗列描述。(VCEO的电路连接与概念可参看前文的图3-5.06)

• VCBO:发射极开路情况下,CB间的集电结结的反向击穿电压,为40V。(VCBO电路连接和概念可参看前文的图3-3.07和图3-3.10。)

• VEBO:集电极开路情况下,BE间发射结的反偏击穿电压,为5V。

• IC-continuous:可承受的最大连续集电极电流,为200mA。

• PD(@TA=25℃):环境温度为25℃时的最大耗损功率(TA中A的意思是“Ambient”),典型值为625mW、衰减系数为5mW/℃。这2个是比较重要的参数,请参看下面的详细说明。

• PD(@TC=25℃):管体表面温度为25℃时的最大耗损功率(TC中C的意思是“Surface”),典型值为1.5W,比上面环境温度为25℃时的PD值大了近3倍。这个也很好理解,一般来说温度越高,晶体管的性能越差。在晶体管电流较大时,管体表面温度有可能远高于环境温度(摸上去都可能烫手),所以限制了最大耗损功率的大小。只有在管体表面加装了面积很大且接触良好的散热片时,才能认为管体表面温度近似等于环境温度,而使用这个1.5W的标称值。

• TJ, Tstg:工作温度范围与仓储温度范围,典型值为-55℃~+150℃。

• RθJA:内部PN结到环境之间的热阻,为200℃/W。关于热阻、温度、功率之间的如何计算,前面的“1-6二极管数据规格书”小节已经介绍过了,这里就不再赘述了,回看可点击这里

• RθJC:内部PN结到管体表面之间的热阻,为83.3℃/W。

● 关于最大耗损功率的说明:

由于BJT的CE极间有压降VCE、有电流IC,所以三极管本身也是要消耗功率的,而且还不小。根据“功率=电压*电流”的公式,三极管的主要功耗产生在C、E极间(BE间和BC间由于基极电流IB太小,故可以忽略不记)。

所以在做设计时,除了要保证VCE不能超过上面的VCEO、IC不能超过上面的IC-continuous以外,还要计算耗损功率是否会超限,如下图所示:

图3-8.04

在上图中,PD功率曲线下方的绿色区域是安全区域,如果超出这个区域,就会导致晶体管损坏。

衰减系数(Derate above 25℃)5.0mW/℃是指,当温度高于25℃时,每升高1℃,最大耗损功率参数会降低5mW。比如,当环境温度上升到135℃时,本晶体管允许的最大耗损功率PD只有:

当环境温度上升到125℃时,本晶体管允许的最大耗损功率PD更是下降到了:

2. 具体性能参数

从第2页开始,为具体的性能参数表格,我们一个个表格来看:

(1)截止性能参数

图3-8.05

• V(BR)CEO:、V(BR)CBO、V(BR)EBO:这3个参数在前面的总体性能表格中已经出现过,这里只是为了表格完整性再重复罗列一下而已。

• ICBO:指在E极开路,CB间加上20V的反偏电压时,集电结的漏电流,为50nA。(电路连接和概念可参看前文图3-3.07)。一般我们可以通过这个参数计算ICEO(ICEO的概念可参看前文图3-5.06),具体算式为:ICEO = β ICBO

• IEBO:指在C极开路,EB间加上20V的反偏电压时,发射结的漏电流,为50nA。

(2)导通性能参数

图3-8.06

• hFE:这个就是直流电流放大系数β(至于为什么要写成hFE,这个我们在下一章BJT的交流分析中会讲)。这里我们在表格中可以看到,在IC的两个不同条件下,测得的放大系数不同。在第一个条件(IC=2mA,VCE=1.0V)时,直流放大系数β的值在50~150都是合格的;在第二个条件(IC=50mA,VCE=1.0V)下,放大系数β只有25。

• VCEsat:这个就是在共射放大电路中常用的CE间饱和电压,这里是0.3V。测试条件为IC=50mA,IB=5mA,可以看到,此时直流放大倍数IC/IB=10,远小于放大系数β正常最小值的50,说明确实是饱和了。

• VBEsat:测试条件和上面相同(晶体管处于饱和状态),此时BE间的电压即为VBEsat饱和电压(一般电路分析计算时不常用)。

(3)小信号性能参数

图3-8.07

小信号性能参数基本都为交流参数,这个等我们下一章讲BJT放大电路的交流分析时再讲。现在唯一需要看一下的是上图中的hfe参数(下标fe用小写),即交流电流放大系数βac

3. 特性曲线

数据规格书的第三部分是本晶体管的特性曲线,其中Figure1~8为交流特性曲线,Figure9~12为直流特性曲线。关于交流特性,我们放到下一章再讲,这里我们仅分析Figue9~12的直流特性曲线:

● 直流增益

图3-8.08

上图为直流增益hFE(即直流β)随IC变化的曲线,测试条件为VCE=1V。从图中我们可以看到,hFE值会受多种因素的影响,hFE不仅会随温变化而变化,还会随集电极电流IC的变化而变化。

这里要说明一下的是纵坐标的表示方式,图中“NORMALIZED”称为“归一化参数”。即:把在+25℃和IC=8mA条件下的hFE作为基准hFE值,其他条件下的hFE值相对于这个基准值的比值。这是个无量纲(即无单位)的参数,常用于表示某值随其他条件的相对变化量。

● 饱和电流范围

图3-8.09

上图为描述饱和区的特性曲线,看上去好像很复杂,其实,只要将其顺时针转90度,就是我们熟悉的图形了:

图3-8.10

上图就是我们非常熟悉的共射组态的输出特性曲线了,其中横坐标为VCE,纵坐标是IB(这个与我们先前学过的图形稍稍不同),其中每条曲线对应于一个IC。其实本质是一样的,只不过把我们以前图中的IB和IC互相调换了一下位置而已。图中橙色部分即为大致的饱和区。

● 一些导通时的电压特性

图3-8.11

上图是进一步描述一些电压-电流特性的。其中VCEsat和VBEsat那两条曲线是描述饱和阈值特性的,测试条件为IC/IB=10,此时的直流放大倍数只有10,远小于正常的hFE值了,所以晶体管一定处于饱和状态。最下面那条曲线为饱和阈值电压VCEsat随IC变化的曲线;最上面那条曲线为饱和阈值电压VBEsat随IC变化的曲线。

中间那条曲线为当VCE恒定保持1V时,VBE和IC的对应关系,此曲线其实和饱和没啥关系,只不过是厂家为了方便,把与IC对应的各种电压描述曲线都放到同一张图里了。

● 温度系数

图3-8.12

先不看图,单讲温度系数的含义。温度系数θ的意思是指,某些参数的值可能会随温度的变化而变化。比如,饱和阈值电压VCEsat,会随环境温度的变化而变化,它的温度系数就定义为:θVC,其在某温度t下的计算式为:

问题在于,θVC这个值本身也不是固定的,它会随着IC的变化而变化。所以,图中上面那组横V字形的曲线组,就用来表示θVC值在25℃以上和25℃以下时θVC与IC的对应关系。同理,下面那组曲线表示θVB和IC的对应关系。

回到目录

( end of 3-8)



初级模拟电路:3-8 BJT数据规格书(直流部分)

原文地址:https://www.cnblogs.com/initcircuit/p/11750544.html

时间: 2024-11-29 03:00:23

初级模拟电路:3-8 BJT数据规格书(直流部分)的相关文章

初级模拟电路:3-1 BJT概述

回到目录 1.   名称由来 BJT的全称是双极性结型晶体管(Bipolar Junction Transistor),国内俗称三极管.其实,在英语中,三极管(triode)特指以前的真空电子管形式的三极管,而不是我们现在普遍使用的半导体三极管.“tri-”的意思是“三”,“ode”的意思是“极”,当年的电子管一般都封装在一个圆柱形的真空玻璃管中,所以中文翻译在后面加了个“管”. 早在二战以前,电子技术和电子元器件的应用就已经很发达了,在1930年代,全球电子管的年产量就已经达到1亿支以上.在那

初级模拟电路:3-9 BJT三极管实现逻辑门

回到目录 BJT晶体管可以实现逻辑门,事实上,在场效应管被发明用于集成电路以前,各种逻辑门芯片中的电路就是用BJT晶体管来实现的.最早人们使用二极管与BJT组合来实现逻辑门,这个称为二极管-晶体管逻辑(Diode-Transistor Logic),简称DTL:后来改进为全部用BJT晶体管来实现逻辑门,这个称为晶体管-晶体管逻辑(Transistor-Transistor Logic),简称TTL.早期广为人知的TTL电平,就是基于这种用BJT晶体管实现的逻辑门.TTL的优点是响应速度比较快,缺

初级模拟电路:1-3 二极管的伏安特性

好了,前面的就算不懂也没关系,真正的模拟电路从这里开始.要使用二极管做电路设计,第一件事就是掌握二极管的伏安特性曲线. 1.   完整的二极管伏安特性曲线 图 1-3.01 二级管的完整伏安特性如上图所示(为表示方便,图中横坐标和纵坐标在正半轴和负半轴的尺度是不一样的),说明如下: (1) 在正偏时,当VD很小时,电流接几乎为0.当VD增大到一定阈值后(图中为0.7V左右),电流开始极快地以指数级增长(毫安级). (2) 在反偏时,反向饱和电流IS维持一个很小值(微安级),不随反偏电压变化.但是

初级模拟电路:目录

前言概述 一.  PN结与二极管 1-1 半导体材料 1. 原子模型 2. 能带模型 3. 载流子 1-2 PN结与二极管 1. 掺杂半导体 2. PN结 3. 二极管的偏置 1-3 二极管的伏安特性 1. 完整的二极管伏安特性曲线 2. 温度影响 3. 简化的二极管伏安特性曲线 1-4 二极管的电阻 1-5 二极管的其他特性 1-6 二极管数据规格表 1-7 特殊用途二极管 初级模拟电路:目录 原文地址:https://www.cnblogs.com/initcircuit/p/1080175

初级模拟电路:1-2 PN结与二极管

1.   掺杂半导体 上面我们分析了本征半导体的导电情况,但由于本征半导体的导电能力很低,没什么太大用处.所以,一般我们会对本征半导体材料进行掺杂,即使只添加了千分之一的杂质,也足以改变半导体材料的导电特性.通过加入不同特性的掺杂的元素,可以做出两种不同性质的半导体材料:n型半导体材料和 p型半导体材料,下面分别予以介绍. (1) n型半导体 n型半导体材料是通过对本征半导体掺入有5个价电子的元素得到的,常见的5价元素有:锑(Sb).砷(As).磷(P),下面以锑作为掺杂元素.硅作为本征基片来举

初级模拟电路:3-6 共射放大电路-2(分压偏置的直流分析)

回到目录 (续上小节) 3. 分压偏置 前面的“改进型固定偏置”电路,虽然情况比原始的固定偏置电路好了一点,但还是不太理想,于是人们又设计出了性能更加稳定的分压偏置(voltage-divider bias configuration)电路,如下图所示: 图3-6.06 分压偏置电路的稳定性非常完美,放大系数β的变化对输出静态工作点IC和VCE几乎没有什么影响,我们在下面的分析中可以验证这一点. 对于分压偏置的输入端分析,有“近似分析”和“精确分析”两种方法,一般在实际工程应用中,“近似分析”法

初级模拟电路:概述

做嵌入式开发,以我个人的经验,虽然70%以上的时间都会花在软件上面(并且软件的比重将来还可能更多),但剩下那30%,无论如何也是要与硬件打交道的.那模拟电路和数字电路就是绕不过去的坎,总会碰上的. 很多嵌入式工程师比较怕模拟这一块,因为在学校里,虽然很多专业都会开模拟电路的课程,但我相信80%以上的人当年是没学明白的(包括我自己).后来由于工作中要用,不得不再回去啃书,而且买回来一堆古今中外的模电的书(噢,没有古),互相参照着看,才慢慢.慢慢.稍微.有点整明白了. 现在回过头再看当年学校里的模电

初级模拟电路:1-1 半导体材料

几乎所有的模电教材,第一章都会写PN结与二极管,但是能写到让人完全读懂的却不多.我当年学模电的时候,曾经卡在这里很长时间,一些概念貌似看明白了,但一深究就会觉得有些地方解释不通,解释不通的地方书本上又语焉不详.直到很多年后才知道,这个其实涉及到蛮复杂的半导体材料学和量子力学机制,如果不是专门做模拟IC设计,一般搞分立元件电路的人其实并不需要搞明白其中的详细原理与机制,只要知道其伏安曲线,再知道一些其他非线性特性,就可以设计电路了.所以,很多教科书都在这里稍微描述一下,也不指望读者去深入理解.我这

初级模拟电路:2-2 二极管实现逻辑门

回到目录 二极管可以实现简单的数字电路中的 与门(and gate)和 或门(or gate)逻辑.优点是电路简单,成本低:缺点是功耗比较大.事实上,我们一般不会真正用二极管去构造逻辑电路,因为这么简单的一个逻辑门功能,要消耗这么大功耗实在不划算.这里仅仅是作为一种概念电路,用来说明二极管也是可以实现门电路的,还有就是在万不得已情况下偶尔用一下. 1.   或门 根据TTL电平信号规定,对于输出信号,输出电平大于2.4V属于高电平,一般代表逻辑1:输出电平小于0.4V的属于低电平,一般代表逻辑0