关于文本相似度-LD算法和余弦算法的比较

  具体算法代码网上有现成的工具类。不一一列举了。我在做某个项目的时候发现LD算法有个弊端。就是对于较大文本(>5w)的相似度计算会特别慢,原因在于LD的计算形式是:

LD 可能衡量两字符串的相似性。它们的距离就是一个字符串转换成那一个字符串过程中的添加、删除、修改数值。如果文本变的非常的大可以想象计算的次数

如果两个字符串都是20000字符,则LD矩阵的大小为20000*20000*2=800000000Byte=800MB。故,在比较长字符串的时候,还有其他性能更好的算法。

下面介绍下余弦算法 余弦相似度量:计算个体间的相似度。相似度越小,距离越大。相似度越大,距离越小。

如何计算:一个向量空间中两个向量夹角间的余弦值作为衡量两个个体之间差异的大小,余弦值接近1,夹角趋于0,表明两个向量越相似,余弦值接近于0,夹角趋于90度,表明两个向量越不相似。1、分词;2、列出所有词;3、分词编码;4、词频向量化;5、套用余弦函数计量两个句子的相似度。

下面是个人的比较,文本为一段文字复制出的(不要忽略这个前提)

精度问题,个人更加偏向于LD算法,这个余弦算法对于(复制的)大篇章修改的计算精度有问题,可能理解有误望指正

原文地址:https://www.cnblogs.com/ybniu/p/12111265.html

时间: 2024-11-16 23:16:48

关于文本相似度-LD算法和余弦算法的比较的相关文章

.NET下文本相似度算法余弦定理和SimHash浅析及应用

在数据采集及大数据处理的时候,数据排重.相似度计算是很重要的一个环节,由此引入相似度计算算法.常用的方法有几种:最长公共子串(基于词条空间).最长公共子序列(基于权值空间.词条空间).最少编辑距离法(基于词条空间).汉明距离(基于权值空间).余弦值(基于权值空间)等,今天我们着重介绍最后两种方式. 余弦相似性 原理:首先我们先把两段文本分词,列出来所有单词,其次我们计算每个词语的词频,最后把词语转换为向量,这样我们就只需要计算两个向量的相似程度. 我们简单表述如下 文本1:我/爱/北京/天安门/

转:文本相似度算法

文本相似度算法 原文出自:http://www.cnblogs.com/liangxiaxu/archive/2012/05/05/2484972.html 1.信息检索中的重要发明TF-IDF 1.1TF Term frequency即关键词词频,是指一篇文章中关键词出现的频率,比如在一篇M个词的文章中有N个该关键词,则 (公式1.1-1) 为该关键词在这篇文章中的词频. 1.2IDF Inverse document frequency指逆向文本频率,是用于衡量关键词权重的指数,由公式 (公

java文本相似度计算(Levenshtein Distance算法(中文翻译:编辑距离算法))----代码和详解

算法代码实现: package com.util; public class SimFeatureUtil { private static int min(int one, int two, int three) { int min = one; if (two < min) { min = two; } if (three < min) { min = three; } return min; } public static int ld(String str1, String str2)

【java算法】---余弦相似度计算字符串相似率

余弦相似度计算字符串相似率 功能需求:最近在做通过爬虫技术去爬取各大相关网站的新闻,储存到公司数据中.这里面就有一个技术点,就是如何保证你已爬取的新闻,再有相似的新闻 或者一样的新闻,那就不存储到数据库中.(因为有网站会去引用其它网站新闻,或者把其它网站新闻拿过来稍微改下内容就发布到自己网站中). 解析方案:最终就是采用余弦相似度算法,来计算两个新闻正文的相似度.现在自己写一篇博客总结下. 一.理论知识 先推荐一篇博客,对于余弦相似度算法的理论讲的比较清晰,我们也是按照这个方式来计算相似度的.网

相似度算法之余弦相似度

转自:http://blog.csdn.net/u012160689/article/details/15341303 余弦距离,也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量. 余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性". 上图两个向量a,b的夹角很小可以说a向量和b向量有很高的的相似性,极端情况下,a和b向量完全重合.如下图: 如上图二:可以认为a和b向量是相等的,也即a,b向量代表的文本是完全相似的,或

基于word分词提供的文本相似度算法来实现通用的网页相似度检测

实现代码:基于word分词提供的文本相似度算法来实现通用的网页相似度检测 运行结果: 检查的博文数:128 1.检查博文:192本软件著作用词分析(五)用词最复杂99级,相似度分值:Simple=0.968589 Cosine=0.955598 EditDistance=0.916884 EuclideanDistance=0.00825 ManhattanDistance=0.001209 Jaccard=0.859838 JaroDistance=0.824469 JaroWinklerDi

对比两个文件相似度 余弦算法

文件A1 包含字符Bi 的个数BiN1,文件A2 包含的字符Bi 的个数BiN2 利用余弦算法:   相似度 = (B1N1*B1N2 +B2N1*B2N2+....+BiN1*BiN2)/(Math.sqrt(B1N1^2 +B2N1^2+....+BiN1^2)*Math.sqrt(B1N2^2 +B2N2^2+....+BiN2^2). Math.sqrt() 代表开方. 具体代码如下: public class SimilarDegreeByCos { /* * 计算两个字符串(英文字符

利用word分词提供的文本相似度算法来辅助记忆英语单词

本文实现代码:利用word分词提供的文本相似度算法来辅助记忆英语单词 本文使用的英语单词囊括了几乎所有的考纲词汇共18123词: /**  * 考纲词汇  * @return  */ public static Set<Word> getSyllabusVocabulary(){     return get("/word_primary_school.txt",             "/word_junior_school.txt",       

文本相似度判定

刘 勇   Email:[email protected] 简介 针对文本相似判定,本文提供余弦相似度和SimHash两种算法,并根据实际项目遇到的一些问题,给出相应的解决方法.经过实际测试表明:余弦相似度算法适合于短文本,而SimHash算法适合于长文本,并且能应用于大数据环境中. 余弦相似度 原理 余弦定理:                   图-1 余弦定理图示 性质: 余弦值的范围在[-1,1]之间,值越趋近于1,代表两个向量的方向越趋近于0°,他们的方向更加一致,相应的相似度也越高.