RNN循环神经网络学习——概述

  循环神经网络(Recurrent Neural NetWork,RNN)是一种将节点定向连接成环的人工神经网络,其内部状态可以展示动态时序行为。

  循环神经网络的主要用途是处理和预测序列数据。循环神经网络最初就是为了刻画一个序列当前的输出与之前信息的关系。从网络结构上来看,循环神经网络会记忆之前的信息,并利用之前的信息影响后面节点的输出。也就是说,循环神经网络的隐藏层之间的节点是有连接的,隐藏层的输入不仅包含输入层的输出,还包括上一时刻隐藏层的输出。

  

  

  如图为典型的RNN结构示意图。RNN主体结构的输入,除了来自输入层的xt 还有一个循环的边来提供上一时刻的隐层状态St。在每一时刻,RNN的模块在读取了Xt和St-1之后会产生新的隐藏状态St,并产生本时刻的输出Ot。RNN当前的状态是由上一时刻的状态St-1和当前的输入Xt共同决定的。对于一个序列数据,可以将这个序列上不同时刻的数据依次传入循环神经网络的输入层;而输出既可以是对序列下一时刻的预测,也可以是对当前时刻信息的处理结果。循环神经网络要求每一时刻都有一个输入,但是不一定每个时刻都有输出。

  网络在t时刻接收到输入Xt之后,隐藏层的值是St,输出值是Ot。St的值不仅仅取决于St,还取决于St-1。可以用下面的公式来表示。

      Ot=g(V*St)                                        式1

      St=f(U*Xt+W*St-1)                          式2

  式1是输出层的计算公式,输出层是一个全连接层,它的每个节点都和隐藏层的每个节点相连。其中V是输出层的权重矩阵,g是激活函数。

  式2是隐藏层的计算公式,它是循环层。其中U是输入x的权重矩阵,W是上一次的值St-1作为这一次输入的权重矩阵,f是激活函数。

  由上面两个式子可以得出,循环层和全连接层的区别就是循环层多了一个权重矩阵W。

循环神经网络的训练算法:

  如果将RNN进行网络展开,那么参数W、U、V是共享的,并且在使用梯度下降算法时,每一步的输出不仅仅依赖于当前步网络的状态,还依赖于前面若干步网络的状态。采用BPTT(Back Propagation Trough Time)沿时间反向传播算法进行训练,步骤如下:

  (1)前向计算每个神经元的输入值

  (2)反向计算每个神经元的误差值,包括两个方向:一个是沿时间爱你的反向传播,计算每个时刻的误差项;另一个是将误差项向上一层传播。

  (3)计算每个权重的梯度。

  (4)用梯度下降的误差后向传播算法更新权重。

  需要注意:理论上,RNN可以支持任意长度的序列。然而,在实际训练过程中,如果序列过长,一方面会导致训练时出现梯度消失和梯度爆炸的问题;另一方面,展开后的循环神经网络会占用过大的内存。所以,实际中会规定一个最大长度,当序列长度超过规定长度后会对序列进行截断。



RNN循环神经网络学习——概述

原文地址:https://www.cnblogs.com/candyRen/p/11966837.html

时间: 2024-10-04 13:43:36

RNN循环神经网络学习——概述的相关文章

TensorFlow框架(6)之RNN循环神经网络详解

1. RNN循环神经网络 1.1 结构 循环神经网络(recurrent neural network,RNN)源自于1982年由Saratha Sathasivam 提出的霍普菲尔德网络.RNN的主要用途是处理和预测序列数据.全连接的前馈神经网络和卷积神经网络模型中,网络结构都是从输入层到隐藏层再到输出层,层与层之间是全连接或部分连接的,但每层之间的节点是无连接的. 图 11 RNN-rolled 如图 11所示是一个典型的循环神经网络.对于循环神经网络,一个非常重要的概念就是时刻.循环神经网

CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)

CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别? DNN以神经网络为载体,重在深度,可以说是一个统称.RNN,回归型网络,用于序列数据,并且有了一定的记忆效应,辅之以lstm.CNN应该侧重空间映射,图像数据尤为贴合此场景. DNN以神经网络为载体,重在深度,可以说是一个统称.RNN,回归型网络,用于序列数据,并且有了一定的记忆效应,辅之以lstm.CNN应该侧重空间映射,图像数据尤为贴合此场景. Stanford University CS231

RNN 循环神经网络-BF 求导过程

RNN 循环神经网络-BF 求导过程 所有的RNN都具有一种重复神经网络模块的链式形式.在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层 在时间视角上的显示为下图: 求导BP 更新参数值 整体误差E等于每个时刻E_t的误差之和 整体损失对U/V/W进行求偏导 \[ ΔU=\frac{\partial E}{\partial U}=\sum_t \frac{\partial e_t}{\partial U} \] \[ ΔV=\frac{\partial E}{\par

RNN循环神经网络实现预测比特币价格过程详解

http://c.biancheng.net/view/1950.html 本节将介绍如何利用 RNN 预测未来的比特币价格. 核心思想是过去观察到的价格时间序列为未来价格提供了一个很好的预估器.给定时间间隔的比特币值通过https://www.coindesk.com/api/的 API 下载,以下是 API 文档的一部分: 经 MIT 授权许可,本节将使用https://github.com/guillaume-chevalier/seq2seq-signal-prediction中的代码.

RNN循环神经网络(Recurrent Neural Network)学习

一.RNN简介 1.)什么是RNN? RNN是一种特殊的神经网络结构,考虑前一时刻的输入,且赋予了网络对前面的内容的一种'记忆'功能. 2.)RNN可以解决什么问题? 时间先后顺序的问题都可以使用RNN来解决,比如:音乐,翻译,造句,语音识别,视频图像预测,语言处理等等,后来经过变种甚至可以达到CNN的作用 具体例子1 Car which.............,() ..........使用RNN可以预测括号里面的内容应该为 is/was. 2 学习莎士比亚写的诗词,然后进行模仿 3 你想为

【6-1】RNN循环神经网络

一.问题:如何利用神经网络处理序列问题(语音.文本)? 在MNIST手写数字识别中,输入一张图片,得到一个结果,输入另一张图片,得到另一个结果,输入的样本是相互独立的,输出的结果之间也不会相互影响.也就是说,这时处理的数据是IID(独立同分布)数据,但序列类的数据却不满足IID特征,所以RNN出场了. 二.RNN的结构 看到hello,wor__!你肯定会轻而易举地预测出后两个字符为ld. RNN结构如下: 左侧:x是输入,s相当于隐藏层,o是输出.U.V.W都是权值矩阵.为什么称之为循环那?因

《转》循环神经网络(RNN, Recurrent Neural Networks)学习笔记:基础理论

转自 http://blog.csdn.net/xingzhedai/article/details/53144126 更多参考:http://blog.csdn.net/mafeiyu80/article/details/51446558 http://blog.csdn.net/caimouse/article/details/70225998 http://kubicode.me/2017/05/15/Deep%20Learning/Understanding-about-RNN/ RNN

循环神经网络(RNN)模型与前向反向传播算法

在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域. 1. RNN概述 在前面讲到的DNN和CNN中,训练样本的输入和输出是比较的确定的.但是有一类问题DNN和CNN不好解决,就是训练样本输入是连续的序列,且序列的长短不

theano学习指南--词向量的循环神经网络(翻译)

欢迎fork我的github:https://github.com/zhaoyu611/DeepLearningTutorialForChinese 最近在学习Git,所以正好趁这个机会,把学习到的知识实践一下~ 看完DeepLearning的原理,有了大体的了解,但是对于theano的代码,还是自己撸一遍印象更深 所以照着deeplearning.net上的代码,重新写了一遍,注释部分是原文翻译和自己的理解. 感兴趣的小伙伴可以一起完成这个工作哦~ 有问题欢迎联系我 Email: [email