机器学习——Bagging与随机森林算法及其变种

Bagging算法

  凡解:给定M个数据集,有放回的随机抽取M个数据,假设如此抽取3组,3组数据一定是有重复的,所以先去重。去重后得到3组数据,每组数据量分别是s1,s2,s3,然后三组分别训练组合成一个强模型。如下图:

随机森林算法

  一般用于大规模数据,百万级以上的。

  在Bagging算法的基础上,如上面的解释,在去重后得到三组数据,那么再随机抽取三个特征属性,选择最佳分割属性作为节点来创建决策树。可以说是

随机森林=决策树+Bagging

如下图

RF(随机森林)的变种:

  ExtraTree算法

  凡解:和随机森林的原理基本一样。主要差别点如下

①随机森林是在含有m个数据的原数据集上有放回的抽取m个数据,而ExtraTree算法是直接用原数据集训练。

②随机森林在选择划分特征点的时候会和传统决策树一样,会基于信息增益、信息增益率、基尼系数、均方差等原则来选择最优特征值;而ExtraTree会随机的选择一个特征值来划分决策树。

  TRTE算法

  不重要,了解一下即可

  官解:TRTE是一种非监督的数据转化方式。对特征属性重新编码,将低维的数据集映射到高维,从而让映射到高维的数据更好的应用于分类回归模型。

  划分标准为方差

  看例子吧直接:

  

  IForest

  IForest是一种异常点检测算法,使用类似RF的方式来检测异常点

  此算法比较坑,适应性不强。

  1.在随机采样的过程中,一般只需要少量数据即可;

  •2.在进行决策树构建过程中,IForest算法会随机选择一个划分特征,并对划分特征随机选择一个划分阈值;

  •3.IForest算法构建的决策树一般深度max_depth是比较小的。

  此算法可以用,但此算法连创作者本人也无法完整的解释原理。

RF(随机森林)的主要优点:

●1.训练可以并行化,对于大规模样本的训练具有速度的优势;

●2.由于进行随机选择决策树划分特征列表,这样在样本维度比较高的时候,仍然具有比较高的训练性能;

●3.可以给出各个特征的重要性列表;
●4.由于存在随机抽样,训练出来的模型方差小,泛化能力强;
●5. RF实现简单;
●6.对于部分特征的缺失不敏感。
RF的主要缺点:
●1.在某些噪音比较大的特征上(数据特别异常情况),RF模型容易陷入过拟合;
●2.取值比较多的划分特征对RF的决策会产生更大的影响,从而有可能影响模型的
效果。

随机树主要参数,划线部分为主要调整的参数

原文地址:https://www.cnblogs.com/qianchaomoon/p/12128764.html

时间: 2024-10-01 12:27:22

机器学习——Bagging与随机森林算法及其变种的相关文章

Bagging与随机森林算法原理小结

在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合.本文就对集成学习中Bagging与随机森林算法做一个总结. 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力. 1.  bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图. 从上图可以看出,

【机器学习基础】随机森林算法

引入 我们回顾一下之前学习的两个算法,Bagging算法中,通过bootstrapping得到不一样的数据,通过这些数据送到一个基本算法之后,得到不同的g,最后对这些g取平均得到G:决策树算法中,通过递归方式建立子树,最终得到一棵完整的树. 这两种算法都有其鲜明的特点,决策树对于不同的数据相对会敏感一些,即其算法的variance很大,而Bagging的特点是通过投票和平均的方式来降低variance的效果.如果将这两种方法结合起来,就是该文要介绍的随机森林,random forest. 1.

机器学习——随机森林算法及原理

1. 随机森林使用背景 1.1 随机森林定义 随机森林是一种比较新的机器学习模型.经典的机器学习模型是神经网络,有半个多世纪的历史了.神经网络预测精确,但是计算量很大.上世纪八十年代Breiman等人发明分类树的算法(Breiman et al. 1984),通过反复二分数据进行分类或回归,计算量大大降低.2001年Breiman把分类树组合成随机森林(Breiman 2001a),即在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,再汇总分类树的结果.随机森林在运算量没有显著提

R语言︱机器学习模型评估方案(以随机森林算法为例)

R语言︱机器学习模型评估方案(以随机森林算法为例) 笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖

web安全之机器学习入门——3.2 决策树与随机森林算法

目录 简介 决策树简单用法 决策树检测P0P3爆破 决策树检测FTP爆破 随机森林检测FTP爆破 简介 决策树和随机森林算法是最常见的分类算法: 决策树,判断的逻辑很多时候和人的思维非常接近. 随机森林算法,利用多棵决策树对样本进行训练并预测的一种分类器,并且其输出的类别是由个别决策树输出的类别的众数决定. 决策树简单用法 使用sklearn自带的iris数据集 # -*- coding: utf-8 -*- from sklearn.datasets import load_iris from

随机森林算法基础梳理

1.集成学习概念 在机器学习的有监督学习算法中,我们的目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往不这么理想,有时我们只能得到多个有偏好的模型(弱监督模型,在某些方面表现的比较好).集成学习就是组合这里的多个弱监督模型以期得到一个更好更全面的强监督模型,集成学习潜在的思想是即便某一个弱分类器得到了错误的预测,其他的弱分类器也可以将错误纠正回来. 集成方法是将几种机器学习技术组合成一个预测模型的元算法,以达到减小方差(bagging).偏差(boosting)或改进预测(st

R语言︱决策树族——随机森林算法

笔者寄语:有一篇<有监督学习选择深度学习还是随机森林或支持向量机?>(作者Bio:SebastianRaschka)中提到,在日常机器学习工作或学习中,当我们遇到有监督学习相关问题时,不妨考虑下先用简单的假设空间(简单模型集合),例如线性模型逻辑回归.若效果不好,也即并没达到你的预期或评判效果基准时,再进行下换其他更复杂模型来实验. ---------------------------------------------- 一.随机森林理论介绍 1.1 优缺点 优点. (1)不必担心过度拟合

《机器学习技法》---随机森林

1 随机森林 bagging的好处是降低各个子分类器的variance,而决策树又是对数据敏感的算法,variance比较大.因此我们很自然地就把bagging用到了决策树.也就是基本的随机森林算法: 随机森林的好处是: (1)每棵树并行化学习,非常有效率 (2)继承了CART的好处 (3)弥补了决策树variance大的缺点.

随机森林 算法过程及分析

简单来说,随机森林就是Bagging+决策树的组合(此处一般使用CART树).即由很多独立的决策树组成的一个森林,因为每棵树之间相互独立,故而在最终模型组合时,每棵树的权重相等,即通过投票的方式决定最终的分类结果. 随机森林算法主要过程: 1.样本集的选择. 假设原始样本集总共有N个样例,则每轮从原始样本集中通过Bootstraping(有放回抽样)的方式抽取N个样例,得到一个大小为N的训练集.在原始样本集的抽取过程中,可能有被重复抽取的样例,也可能有一次都没有被抽到的样例. 共进行k轮的抽取,