hiho #1014 : Trie树 (字典树的建立和查找)

#1014 : Trie树

时间限制:10000ms

单点时限:1000ms

内存限制:256MB

描述

小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进。

这一天,他们遇到了一本词典,于是小Hi就向小Ho提出了那个经典的问题:“小Ho,你能不能对于每一个我给出的字符串,都在这个词典里面找到以这个字符串开头的所有单词呢?

身经百战的小Ho答道:“怎么会不能呢!你每给我一个字符串,我就依次遍历词典里的所有单词,检查你给我的字符串是不是这个单词的前缀不就是了?

小Hi笑道:“你啊,还是太年轻了!~假设这本词典里有10万个单词,我询问你一万次,你得要算到哪年哪月去?”

小Ho低头算了一算,看着那一堆堆的0,顿时感觉自己这辈子都要花在上面了...

小Hi看着小Ho的囧样,也是继续笑道:“让我来提高一下你的知识水平吧~你知道树这样一种数据结构么?”

小Ho想了想,说道:“知道~它是一种基础的数据结构,就像这里说的一样!”

小Hi满意的点了点头,说道:“那你知道我怎么样用一棵树来表示整个词典么?”

小Ho摇摇头表示自己不清楚。

提示一:Trie树的建立

“你看,我们现在得到了这样一棵树,那么你看,如果我给你一个字符串ap,你要怎么找到所有以ap开头的单词呢?”小Hi又开始考校小Ho。

“唔...一个个遍历所有的单词?”小Ho还是不忘自己最开始提出来的算法。

“笨!这棵树难道就白构建了!”小Hi教训完小Ho,继续道:“看好了!”

提示二:如何使用Trie树

提示三:在建立Trie树时同时进行统计!

“那么现在!赶紧去用代码实现吧!”小Hi如是说道

输入

输入的第一行为一个正整数n,表示词典的大小,其后n行,每一行一个单词(不保证是英文单词,也有可能是火星文单词哦),单词由不超过10个的小写英文字母组成,可能存在相同的单词,此时应将其视作不同的单词。接下来的一行为一个正整数m,表示小Hi询问的次数,其后m行,每一行一个字符串,该字符串由不超过10个的小写英文字母组成,表示小Hi的一个询问。

在20%的数据中n, m<=10,词典的字母表大小<=2.

在60%的数据中n, m<=1000,词典的字母表大小<=5.

在100%的数据中n, m<=100000,词典的字母表大小<=26.

本题按通过的数据量排名哦~

输出

对于小Hi的每一个询问,输出一个整数Ans,表示词典中以小Hi给出的字符串为前缀的单词的个数。

样例输入
5
babaab
babbbaaaa
abba
aaaaabaa
babaababb
5
babb
baabaaa
bab
bb
bbabbaab
样例输出
1
0
3
0
0

EmacsNormalVim

知识拓展

提示一:Trie树的建立

小Hi于是在纸上画了一会,递给小Ho,道:“你看这棵树和这个词典有什么关系?”

小Ho盯着手里的纸想了一会道:“我知道了!对于从树的根节点走到每一个黑色节点所经过的路径,如果将路径上的字母都连起来的话,就都对应着词典中的一个单词呢!”

小Hi说道:“那你知道如何根据一个词典构建这样一棵树么?”

“不造!”

“想你也不知道,我来告诉你吧~”小Hi摆出一副老师的样子,说道:“你先这么想,如果我已经有了这样的一个词典和对应的一棵树,我要添加一个新的单词apart,我应该怎么做?”

“让我想想……”小Ho又开始苦思冥想:“首先我要先看看已经能走到哪一步了对吧?比如我从1号节点走"a"这一条边就可以走到2号节点,然后从2号节点走"p"这一条边可以走到3号节点,然后……就没路可走了!这时候我就需要添加一条从3号节点出发且标记为"p"的边才可以接着往下走……最后就是这样了!然后我把最后到达的这个结点标记为黑色就可以了。”

小Hi说道:“真聪明~那你不妨再算算如果是一个有10W个单词的词典,每个单词的长度不超过10的话,这棵树会有多大?”

小Ho于是掏出笔来,一边画一遍念叨:“假设我已经将前三个单词构成了这样一棵树,那么我要添加一个新的单词的时候,最坏情况是这个单词和之前的三个单词都没有公共前缀,那么这个新的单词的长度如果是5的话,我就至少要添加5个结点到树中才能够继续表示这个词典!”

“而如果每次都是最坏情况的话,这棵树最多也就100W个结点这么大!更何况最坏情况是不可能次次都发生的!毕竟字母表也才26个字母呢!”小Ho继续说道。

“嗯~这样我们是不是就可以用(单词个数*单词长度)个结点来表示一个词典了呢?小Hi问道。

“是的呢!”小Ho道:“但是这样一棵树又有什么用呢?”

“可别小看了它,它就是传说中的Trie树哦~至于他有什么用,一会你就知道了!”小Hi笑嘻嘻的回答道。

提示二:如何使用Trie树

“这个结点……是从根节点先走"a"然后走"p"到达的结点呢!哦~~我知道了,以这个结点为根的子树里所有标记结点都是以"ap"为前缀的单词呢!而且所有以"ap"为前缀的单词都在以这个节点为根的子树里~”小Ho惊喜道。

“是的呢~那你对怎么解决我的问题有想法了么?”小Hi追问道。

“唔...那就是每次拿到你的字符串之后,我在树上找到其对应的那个结点,然后统计这个节点中有多少个标记节点?”小Ho不是很确定的答道:“但是这样...似乎在最坏情况,也就是你每次给个字符串都很短的时候,我还是要扫描这棵树的很大一部分呢?也就是说虽然平均时间复杂度降低了,但是最坏情况时间复杂度还是很高的样子!”

小Hi笑嘻嘻道:”没想到你自己看出来了呢~我还以为又要教训你了!~那你有什么好的解决方法么?”

“没呢!小Hi你就别卖关子了,赶紧告诉我吧!”被折磨的够呛的小Ho开始求饶。

“好吧!就帮你这一回~”

提示三:在建立Trie树时同时进行统计!

Trie树 ,又称字典树或者前缀树,单词查找树,是一种树形结构。每个节点在书中的位置决定了它代表的字符串。

Trie可以看成是确定有限状态自动机的一种特例 它接受所有字典中出现的单词。根节点是起始态,所有粗线的节点都是接受态。

算法:

在Trie中插入 查找 删除一个字符串的操作相似。加入要插入的字符串为S,长度为m  我们以插入为例

(1)从根节点开始 从前向后依次读入S的每个字符c

(2)如果当前节点没有一条指向孩子的边为c 那么新建这样一条边和一个孩子节点

(3)沿着c这条边走到下一层的节点

(4)如果还有下一个字符 回到(1) 否则标记当前节点 结束。

Trie 就好像维护了一个字典 可以再这个字典里插入删除字符串 ,也可以查询一个字符串是否在字典中 Tir的插入查找删除复杂度都是O(m)的 其中m为待插入串的长度

用途:

1.Trie可以用来给字符串排序 把这些字符串都插入Trie之后 先序遍历即可

2.Trie的节点上可以存贮额外的信息  比如做词频统计  只需要每个节点上记录一个整数 每次插入时 将节点的计数器+1(也就是这道题)

3.Trie上支持查找最长公共前缀的字符串。

4.在一些应用中实现字符串的自动补全功能

AC代码:

#include <stdio.h>
#include <iostream>
struct Trie
{
	int count;
	struct Trie *word[26];
	Trie()
	{
		count=0;
		for(int i=0;i<26;i++)
		word[i]=NULL;
	}
};
void insert(Trie *root,char str [])
{
	for(str;*str;str++)
	{
		if(root->word[*str-'a'])
		{
			root->word[*str-'a']->count++;
		}
		else
		{
			root->word[*str-'a'] =new Trie();
			root->word[*str-'a']->count++;
		}

		root=root->word[*str-'a'];
	//	printf("%c %d\t",*str,root->count);
	}
}
int search(Trie *root,char str [])
{
	int count;
	while(*str)
	{
		if(root->word[*str-'a'])
		root=root->word[*str-'a'],count=root->count;
		else
		{
			count=0;
			break;
		}
//		printf("--%d ",count);
		str++;
	}
	return count;
}
int main()
{
	int n,m;
	Trie *root=new Trie();
	scanf("%d",&n);
	while(n--)
	{
		char str[20];
		scanf("%s",str);
		insert(root,str);
	}
	scanf("%d",&m);
	while(m--)
	{
		char str[20];
		scanf("%s",str);
		printf("%d\n",search(root,str));
	}
	return 0;
}



时间: 2024-11-19 19:15:34

hiho #1014 : Trie树 (字典树的建立和查找)的相关文章

剑指Offer——Trie树(字典树)

剑指Offer--Trie树(字典树) Trie树 Trie树,即字典树,又称单词查找树或键树,是一种树形结构,是一种哈希树的变种.典型应用是统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.它的优点是:最大限度地减少无谓的字符串比较,查询效率比哈希表高. Trie的核心思想是空间换时间.利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的. Trie树也有它的缺点,Trie树的内存消耗非常大.当然,或许用左儿子右兄弟的方法建树的话,可能会好点.可见,优

Hash树(散列树)和Trie树(字典树、前缀树)

1.Hash树 理想的情况是希望不经过任何比较,一次存取便能得到所查的记录, 那就必须在记的存储位置和它的关键字之间建立一个确定的对应关系f,使每个关键字和一个唯一的存储位置相对应.因而在查找时,只要根据这个对应关系f找到 给定值K的像f(K).由此,不需要进行比较便可直接取得所查记录.在此,我们称这个对应关系为哈希(Hash)函数,按这个思想建立的表为哈希表. 在哈希表中对于不同的关键字可能得到同一哈希地址,这种现象称做冲突.在一般情况下,冲突只能尽可能地减少,而不能完全避免.因为哈希函数是从

【数据结构】前缀树/字典树/Trie

[前缀树] 用来保存一个映射(通常情况下 key 为字符串  value 为字符串所代表的信息) 例如:一个单词集合 words = {  apple, cat,  water  }   其中 key 为单词      value 代表该单词是否存在 words[ 'apple' ] = 存在     而     word[ ' abc' ] = 不存在 图示:一个保存了8个键的trie结构,"A", "to", "tea", "ted

【学习总结】数据结构-Trie/前缀树/字典树-及其最常见的操作

Trie/前缀树/字典树 Trie (发音为 "try") 或前缀树是一种树数据结构,用于检索字符串数据集中的键. 一种树形结构,是一种哈希树的变种. 典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计. 优点:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希树高. 应用: 自动补全 END 原文地址:https://www.cnblogs.com/anliux/p/12590368.html

9-11-Trie树/字典树/前缀树-查找-第9章-《数据结构》课本源码-严蔚敏吴伟民版

课本源码部分 第9章  查找 - Trie树/字典树/前缀树(键树) ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接??? <数据结构-C语言版>(严蔚敏,吴伟民版)课本源码+习题集解析使用说明        课本源码合辑  链接??? <数据结构>课本源码合辑        习题集全解析  链接??? <数据结构题集>习题解析合辑        本源码引入的文件  链接? Status.h.Scanf.c        相关测试数据

hiho #1014 : Trie树

#1014 : Trie树 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进. 这一天,他们遇到了一本词典,于是小Hi就向小Ho提出了那个经典的问题:“小Ho,你能不能对于每一个我给出的字符串,都在这个词典里面找到以这个字符串开头的所有单词呢?” 身经百战的小Ho答道:“怎么会不能呢!你每给我一个字符串,我就依次遍历词典里的所有单词,检查你给我的字

Trie树&mdash;字典树(单词查找树)

Trie树,又称字典树,单词查找树.它来源于retrieval(检索)中取中间四个字符构成的.用于存储大量的字符串以便支持快速模式匹配.主要应用在信息检索领域. Trie有三种结构:标准Trie(standard trie),压缩Trie,后缀Trie(suffix trie). 1.标准Trie 标准Trie树的结构:所有含有公共前缀的字符串将挂在树中同一个结点下.实际上trie简明的存储于串集合汇总的所有公共前缀.加入有这样一个字符串集合X{bear,bell,bid,bull,buy,se

Trie树/字典树题目(2017今日头条笔试题:异或)

1 /* 2 本程序说明: 3 4 [编程题] 异或 5 时间限制:1秒 6 空间限制:32768K 7 给定整数m以及n各数字A1,A2,..An,将数列A中所有元素两两异或,共能得到n(n-1)/2个结果,请求出这些结果中大于m的有多少个. 8 输入描述: 9 第一行包含两个整数n,m. 10 11 第二行给出n个整数A1,A2,...,An. 12 13 数据范围 14 15 对于30%的数据,1 <= n, m <= 1000 16 17 对于100%的数据,1 <= n, m,

Trie树/字典树

Trie树结构 Trie树是一种树形数据结构,又称为单词查找树.字典树,是一种用于快速检索的多叉树结构.典型应用是统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.     它的主要设计思想是空间换时间,利用字符串的公共前缀来降低查询时间的开销.它的优点是可以最大限度的减少无谓的字符串比较,查询效率比哈希表高:缺点是内存消耗非常大. Trie树基本特性 根节点不包含字符,除根节点外每一个节点都只包含一个字符 从根节点到某一节点,路径上经过的字符连接起来,为该节点