对于时间复杂度,我一直搞不清楚是什么回事,或者说处于最简单的计算方式上:
常数阶O(1), 对数阶O(log2n), 线性阶O(n), 线性对数阶O(nlog2n), 平方阶O(n^2), 立方阶O(n^3),..., k次方阶O(n^k), 指数阶O(2^n) 。
其中,
1.O(n),O(n^2), 立方阶O(n^3),..., k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度。。。。
2.O(2^n),指数阶时间复杂度,该种不实用
3.对数阶O(log2n), 线性对数阶O(nlog2n),除了常数阶以外,该种效率最高
例:算法: for(i=1;i<=n;++i) { for(j=1;j<=n;++j) { c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
for(k=1;k<=n;++k) c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3 } } 则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级 则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c 则该算法的 时间复杂度:T(n) = O(n^3) 定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。 几种时间复杂度的举例:O(1)Temp=i;i=j;j=temp; 以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。 O(n^2) 交换i和j的内容 sum=0; (一次) for(i=1;i<=n;i++) (n次 ) for(j=1;j<=n;j++) (n^2次 ) sum++; (n^2次 )解:T(n)=2n^2+n+1 =O(n^2) for (i=1;i<n;i++) { y=y+1; ① for (j=0;j<=(2*n);j++) x++; ② } 解: 语句1的频度是n-1 语句2的频度是(n-1)*(2n+1)=2n^2-n-1 f(n)=2n^2-n-1+(n-1)=2n^2-2 该程序的时间复杂度T(n)=O(n^2). O(n) a=0; b=1; ① for (i=1;i<=n;i++) ② { s=a+b; ③ b=a; ④ a=s; ⑤ }解:语句1的频度:2, 语句2的频度: n, 语句3的频度: n-1, 语句4的频度:n-1, 语句5的频度:n-1, T(n)=2+n+3(n-1)=4n-1=O(n). O(log2n ) i=1; ① while (i<=n) i=i*2; ②解: 语句1的频度是1, 设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=log2n 取最大值f(n)= log2n, T(n)=O(log2n ) O(n^3) for(i=0;i<n;i++) { for(j=0;j<i;j++) { for(k=0;k<j;k++) x=x+2; } }解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3). 下面是一些常用的记法:访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对元素相乘并加到一起,所有元素的个数是n^2。指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果的算法替代之。
时间: 2024-10-05 23:50:42