[leedcode 120] Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

public class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        //空间复杂度为O(n),n为三角形的层数,时间复杂度为O(K),K为整个三角形中数字的个数
        //从底向上计算,动态规划,题意是只能取相邻的,因此状态转移方程可以求得
        int n=triangle.size();
        int dp[]=new int[n];
        for(int i=n-1;i>=0;i--){
            for(int j=0;j<=i;j++){
                if(i==n-1){
                    dp[j]=triangle.get(i).get(j);
                }else{
                    dp[j]=Math.min(dp[j],dp[j+1])+triangle.get(i).get(j);
                }
            }
        }
        return dp[0];
    }
}
时间: 2024-12-22 18:12:02

[leedcode 120] Triangle的相关文章

[leetcode 120]triangle 空间O(n)算法

1 题目 Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from top to bottom is 

LeetCode 120. Triangle 20170706 部分之前做了没写的题目

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from top to bottom is 11 (i

120. Triangle

Problem Statement:  Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from to

【Leetcode】120.Triangle

[Question]   Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from top to bo

[leetcode] 120 Triangle

感觉acm做过之后,这种题太基本了.... 没啥好说的,最简单的动态规划,找出状态转移方程就可以了.采用由下到上的思想(这样最后只需要取出dp[0][0]就是答案),本层每个结点的结果根据下面一行的路基累计和而计算,要么取左边的,要么取右边的,两者取最小的即可. 状态转移方程:triangle[i][j] += min(triangle[i + 1][j], triangle[i + 1][j + 1]) class Solution { public: int minimumTotal(vec

LeetCode:120 Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from top to bottom is 11 (i

Leetcode 120 Triangle (Dynamic Programming Method)

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from top to bottom is 11 (i

leetcode 120 Triangle ----- java

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from top to bottom is 11 (i

LeetCode OJ 120. Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from top to bottom is 11 (i