本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
Description
Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
B
L
== N (mod P)
Input
Read several lines of input, each containing P,B,N separated by a space.
Output
For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
Sample Input
5 2 1 5 2 2 5 2 3 5 2 4 5 3 1 5 3 2 5 3 3 5 3 4 5 4 1 5 4 2 5 4 3 5 4 4 12345701 2 1111111 1111111121 65537 1111111111
Sample Output
0 1 3 2 0 3 1 2 0 no solution no solution 1 9584351 462803587
Hint
The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat‘s theorem that states
B
(P-1)
== 1 (mod P)
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat‘s theorem is that for any m
B
(-m)
== B
(P-1-m)
(mod P) .
Source
正解:BSGS算法
解题报告:
BSGS模板题。
BSGS又称大步小步算法(有人戏称之为拔山盖世算法),其实应该算是一种优化暴力,是一种用空间换时间的办法。
首先我们想对于$a^{x} \equiv b$ ($mod p$),$a、b、p$已知,求最小的正整数$x$。不妨设 $m= \sqrt{p} $ 取上整,令 $x=i*m+j$ ,那么我把原式化开之后就可以得到$a^{m*i}与b*a^{j}$关于p同余。对于右边值从$0$到$m$枚举$j$,把值插入哈希表,对于左边值从$1$到$m$枚举$i$,把值在哈希表中查询看是否存在,查询到的第一个答案即为所求。如果找不到的话,考虑因为我等于是枚举了$ a^{p} $以内的所有情况,但是还没有找到,根据费马小定理,指数大于$p$一定无解。
正确性的话应该是很好想通的,因为i枚举一开始就是$1$,乘上$m$之后显然一定比$b$大。
另外注意一点,因为插入哈希表时如果出现了相等的情况,显然$j$越大越好,所以j从小到大枚举时可以直接覆盖掉之前的结果。
//It is made by ljh2000 #include <iostream> #include <cstdlib> #include <cstring> #include <cstdio> #include <cmath> #include <algorithm> #include <ctime> #include <vector> #include <queue> #include <map> #include <set> #include <string> using namespace std; typedef long long LL; const int MOD = 300007; const int MAXM = 100000; LL p,b,ans,n,to[MAXM],next[MAXM]; int ecnt,first[MOD+12],block,w[MAXM]; inline LL gcd(LL x,LL y){ if(y==0) return x; return gcd(y,x%y); } inline LL fast_pow(LL x,LL y){ if(y==0) return 1; LL r=1; while(y>0) { if(y&1) r*=x,r%=p; x*=x; x%=p; y>>=1; } return r; } inline int getint(){ int w=0,q=0; char c=getchar(); while((c<‘0‘||c>‘9‘) && c!=‘-‘) c=getchar(); if(c==‘-‘) q=1,c=getchar(); while (c>=‘0‘&&c<=‘9‘) w=w*10+c-‘0‘,c=getchar(); return q?-w:w; } inline void insert(LL x,int j){ LL cc=x; x%=MOD; for(int i=first[x];i;i=next[i]) if(to[i]==cc) { w[i]=j; return ; } next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=cc; w[ecnt]=j; } inline LL query(LL x){ LL cc=x; x%=MOD; for(int i=first[x];i;i=next[i]) if(to[i]==cc) return w[i]; return -1; } inline void work(){ bool ok; while(scanf("%lld",&p)!=EOF) { b=getint(); n=getint(); ans=0; if(n==1) { printf("0\n"); continue; } if(gcd(b,p)!=1) { printf("no solution\n"); continue; } memset(first,0,sizeof(first)); ecnt=0; block=sqrt(p); if(block*block<p) block++; for(int i=0;i<=block;i++) insert((n*fast_pow(b,i))%p,i); LL bm=fast_pow(b,block); ok=false; for(int i=1;i<=block;i++) { ans=query(fast_pow(bm,i)); if(ans==-1) continue; ok=true; printf("%lld\n",(LL)i*block-ans); break; } if(!ok) printf("no solution\n"); } } int main() { work(); return 0; }