高并发下接口幂等性解决方案

一、幂等性概念
在编程中.一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“getUsername()和setTrue()”函数就是一个幂等函数. 更复杂的操作幂等保证是利用唯一交易号(流水号)实现.

我的理解:幂等就是一个操作,不论执行多少次,产生的效果和返回的结果都是一样的。

二、幂等性场景
1、查询操作:查询一次和查询多次,在数据不变的情况下,查询结果是一样的。select是天然的幂等操作;

2、删除操作:删除操作也是幂等的,删除一次和多次删除都是把数据删除。(注意可能返回结果不一样,删除的数据不存在,返回0,删除的数据多条,返回结果多个) ;

3、唯一索引:防止新增脏数据。比如:支付宝的资金账户,支付宝也有用户账户,每个用户只能有一个资金账户,怎么防止给用户创建资金账户多个,那么给资金账户表中的用户ID加唯一索引,所以一个用户新增成功一个资金账户记录。要点:唯一索引或唯一组合索引来防止新增数据存在脏数据(当表存在唯一索引,并发时新增报错时,再查询一次就可以了,数据应该已经存在了,返回结果即可);

4、token机制:防止页面重复提交。

5、悲观锁
获取数据的时候加锁获取。select * from table_xxx where id=‘xxx‘ for update; 注意:id字段一定是主键或者唯一索引,不然是锁表,会死人的;悲观锁使用时一般伴随事务一起使用,数据锁定时间可能会很长,根据实际情况选用;

6、乐观锁——乐观锁只是在更新数据那一刻锁表,其他时间不锁表,所以相对于悲观锁,效率更高。乐观锁的实现方式多种多样可以通过version或者其他状态条件:
1. 通过版本号实现update table_xxx set name=#name#,version=version+1 where version=#version#如下图(来自网上);
2. 通过条件限制 update table_xxx set avai_amount=avai_amount-#subAmount# where avai_amount-#subAmount# >= 0要求:quality-#subQuality# >= ,这个情景适合不用版本号,只更新是做数据安全校验,适合库存模型,扣份额和回滚份额,性能更高;

7、分布式锁

如果是分布是系统,构建全局唯一索引比较困难,例如唯一性的字段没法确定,这时候可以引入分布式锁,通过第三方的系统(redis或zookeeper),在业务系统插入数据或者更新数据,获取分布式锁,然后做操作,之后释放锁,这样其实是把多线程并发的锁的思路,引入多多个系统,也就是分布式系统中得解决思路。要点:某个长流程处理过程要求不能并发执行,可以在流程执行之前根据某个标志(用户ID+后缀等)获取分布式锁,其他流程执行时获取锁就会失败,也就是同一时间该流程只能有一个能执行成功,执行完成后,释放分布式锁(分布式锁要第三方系统提供);

8、select + insert
并发不高的后台系统,或者一些任务JOB,为了支持幂等,支持重复执行,简单的处理方法是,先查询下一些关键数据,判断是否已经执行过,在进行业务处理,就可以了。注意:核心高并发流程不要用这种方法;

9、状态机幂等
在设计单据相关的业务,或者是任务相关的业务,肯定会涉及到状态机(状态变更图),就是业务单据上面有个状态,状态在不同的情况下会发生变更,一般情况下存在有限状态机,这时候,如果状态机已经处于下一个状态,这时候来了一个上一个状态的变更,理论上是不能够变更的,这样的话,保证了有限状态机的幂等。注意:订单等单据类业务,存在很长的状态流转,一定要深刻理解状态机,对业务系统设计能力提高有很大帮助

10、对外提供接口的api如何保证幂等
如银联提供的付款接口:需要接入商户提交付款请求时附带:source来源,seq序列号;source+seq在数据库里面做唯一索引,防止多次付款(并发时,只能处理一个请求) 。
重点:对外提供接口为了支持幂等调用,接口有两个字段必须传,一个是来源source,一个是来源方序列号seq,这个两个字段在提供方系统里面做联合唯一索引,这样当第三方调用时,先在本方系统里面查询一下,是否已经处理过,返回相应处理结果;没有处理过,进行相应处理,返回结果。注意,为了幂等友好,一定要先查询一下,是否处理过该笔业务,不查询直接插入业务系统,会报错,但实际已经处理了。

三、总结
幂等与你是不是分布式高并发还有JavaEE都没有关系。关键是你的操作是不是幂等的。一个幂等的操作典型如:把编号为5的记录的A字段设置为0这种操作不管执行多少次都是幂等的。一个非幂等的操作典型如:把编号为5的记录的A字段增加1这种操作显然就不是幂等的。要做到幂等性,从接口设计上来说不设计任何非幂等的操作即可。譬如说需求是:当用户点击赞同时,将答案的赞同数量+1。改为:当用户点击赞同时,确保答案赞同表中存在一条记录,用户、答案。赞同数量由答案赞同表统计出来。总之幂等性应该是合格程序员的一个基因,在设计系统时,是首要考虑的问题,尤其是在像支付宝,银行,互联网金融公司等涉及的都是钱的系统,既要高效,数据也要准确,所以不能出现多扣款,多打款等问题,这样会很难处理,用户体验也不好。

原文地址:https://www.cnblogs.com/linjiqin/p/9678022.html

时间: 2024-10-27 16:46:37

高并发下接口幂等性解决方案的相关文章

高并发下接口的并发问题

事故 前些天上线的扫码送会员活动. 场景:用户登录账号之后,扫二维码,送七天黄金会员,限制每个帐号只能领取一个 有恶意用户刷接口,在高并发下越过限制. 原因 领取会员流程: 1.后端先生成卡卷,将卡号放到消息队列中 2.用户扫码请求领取会员接口 2-1).先检查用户是否已经领取过该活动会员 2-2).领取过return "该帐号已领取"的标示 2-3).没领取从消息队列中拿取一张卡号 2-4).激活卡 2-5).更新用户本次活动为已经激活 这个流程在一般环境下是没有问题的,在高并发下就

关于tomcat8在windows2008下高并发下问题的解决方案

因为客户服务器特殊的环境问题,只能使用windows2008r2服务器,然而配置过后,网站的高访问量很快就出现了各种问题,以下是解决的问题汇总. 服务器环境:windows2008R2+jdk8.0+tomcat8.0.21+sqlserver2008r2(以上软件环境均是64位) 1.首先建议安装jdk8.0(64位)以能获取较高的JVM内存设置,不然网站访问并发过高,内存很快就会出现不足,也就是常说的java heap space不足了.下载地址:http://www.oracle.com/

php结合redis实现高并发下的抢购、秒杀功能

原文: http://blog.csdn.net/nuli888/article/details/51865401 抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个:1 高并发对数据库产生的压力2 竞争状态下如何解决库存的正确减少("超卖"问题)对于第一个问题,已经很容易想到用缓存来处理抢购,避免直接操作数据库,例如使用Redis.重点在于第二个问题 常规写法: 查询出对应商品的库存,看是否大于0,然后执行生成订单等操作,但是在判断库存是否大于0处,如果在高并发下就会有问

php 结合redis实现高并发下的抢购、秒杀功能

抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个:1 高并发对数据库产生的压力2 竞争状态下如何解决库存的正确减少("超卖"问题)对于第一个问题,已经很容易想到用缓存来处理抢购,避免直接操作数据库,例如使用Redis.重点在于第二个问题 常规写法: 查询出对应商品的库存,看是否大于0,然后执行生成订单等操作,但是在判断库存是否大于0处,如果在高并发下就会有问题,导致库存量出现负数 [php] view plain copy <?php $conn=mysql_con

(高级篇)php结合redis实现高并发下的抢购、秒杀功能

抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个:1 高并发对数据库产生的压力2 竞争状态下如何解决库存的正确减少("超卖"问题)对于第一个问题,已经很容易想到用缓存来处理抢购,避免直接操作数据库,例如使用Redis.重点在于第二个问题 常规写法: 查询出对应商品的库存,看是否大于0,然后执行生成订单等操作,但是在判断库存是否大于0处,如果在高并发下就会有问题,导致库存量出现负数 优化方案1:将库存字段number字段设为unsigned,当库存为0时,因为字段不能为负数

PHP开发中多种方案实现高并发下的抢购、秒杀功能

抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个: 1 高并发对数据库产生的压力 2 竞争状态下如何解决库存的正确减少("超卖"问题) 对于第一个问题,已经很容易想到用缓存来处理抢购,避免直接操作数据库,例如使用Redis. 重点在于第二个问题. 常规写法: 查询出对应商品的库存,看是否大于0,然后执行生成订单等操作,但是在判断库存是否大于0处,如果在高并发下就会有问题,导致库存量出现负数 <?php $conn=mysql_connect("localh

【转】php结合redis实现高并发下的抢购、秒杀功能

抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个:1 高并发对数据库产生的压力2 竞争状态下如何解决库存的正确减少("超卖"问题)对于第一个问题,已经很容易想到用缓存来处理抢购,避免直接操作数据库,例如使用Redis.重点在于第二个问题 常规写法: 查询出对应商品的库存,看是否大于0,然后执行生成订单等操作,但是在判断库存是否大于0处,如果在高并发下就会有问题,导致库存量出现负数 优化方案1:将库存字段number字段设为unsigned,当库存为0时,因为字段不能为负数

高并发业务接口的开发思路(转)

高并发业务除了需要有支撑高并发的服务器架构,还需要根据业务需求和架构体系..设计出合理的开发方案,这里根据一个实践过业务场景分析开发思路,罗列出高并发接口需要注意的点,以及设计上的巧思,共勉之,望共鸣 . 业务场景 业务:今日好货.交互端:IOS/Andorid.需求点:(实际业务会复杂些,为了容易理解,这里简化需求点)提供最新的好货商品信息列表,支持分页.需要时时获取最新的商品数据列表,以下情况商品信息会发生变化● 品数据字段更新(人为编辑,热度字段更新,等)● 不定时上新,在固定时段会有大量

Redis实现高并发下的抢购、秒杀功能

博主最近在项目中遇到了抢购问题!现在分享下.抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个:1 高并发对数据库产生的压力2 竞争状态下如何解决库存的正确减少("超卖"问题)对于第一个问题,已经很容易想到用缓存来处理抢购,避免直接操作数据库,例如使用Redis.重点在于第二个问题常规写法:查询出对应商品的库存,看是否大于0,然后执行生成订单等操作,但是在判断库存是否大于0处,如果在高并发下就会有问题,导致库存量出现负数 优化方案1:将库存字段number字段设为unsig