《操作系统、预防进程死锁的银行家算法》

预防进程死锁的银行家算法

原文:https://blog.csdn.net/houchaoqun_xmu/article/details/55540792

一、概念介绍和案例解析
      银行家算法中的数据结构
            可利用资源向量Available:   这是一个含有m个元素的数组,其中的每一个元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源的数目,其数值随该类资源的分配和回收而动态地改变。如果Available[j]=K,则表示系统中现有Rj类资源K个。

            最大需求矩阵Max:       这是一个n×m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果Max[i,j]=K,则表示 进程i  需要 Rj 类资源的最大数目为K。

分配矩阵Allocation:      这也是一个n×m的矩阵,它定义了系统中每一类资源当前已分配给每一进程的资源数。如果Allocation[i,j]=K,则表示进程i当前已分得Rj类资源的数目为K。

需求矩阵Need:          这也是一个n×m的矩阵,用以表示每一个进程尚需的各类资源数。如果Need[i,j]=K,则表示进程i还需要R j类资源K个,方能完成其任务。

                                    上述三个矩阵间存在下述关系:Need[i, j]=Max[i, j]-Allocation[i, j]

银行家算法
        设Request i是进程Pi的请求向量,如果Request i[j]=K,表示进程P i需要K个R j类型的资源。当Pi发出资源请求后,系统按下述步骤进行检查:
          如果Request i[j]≤Need[i,j],便转向步骤(2);否则认为出错,因为它所需要的资源数已超过它所宣布的最大值。
          如果Requesti[j]≤Available[j],便转向步骤(3);否则,表示尚无足够资源,Pi须等待。
          系统试探着把资源分配给进程Pi,并修改下面数据结构中的数值(红色字体):
          系统执行安全性算法,检查此次资源分配后系统是否处于安全状态。若安全,才正式将资源分配给进程Pi,以完成本次分配;否则,将本次的试探分配作废,恢复原来的资源分配状态,让进程Pi等待。
                                     Available[j]:= Available[j]-Requesti[j];
                    Allocation[i,j]:= Allocation[i,j]+Requesti[j];
                    Need[i,j]:= Need[i,j]-Request i[j]; 
安全性算法
  系统所执行的安全性算法可描述如下:
                                          设置两个向量:第一个是工作向量Work,它表示系统可提供给进程继续运行所需的各类资源数目,它含有m个元素,在执行安全算法开始时,Work:=Available。

第二个是Finish,它表示系统是否有足够的资源分配给进程,使之运行完成。开始时先做Finish[i]:=false;当有足够资源分配给进程时,再令Finish[i]:=true。
                                                                  从进程集合中找到一个能满足下述条件的进程:第一【Finish[i]=false;】第二【Need[i,j]≤Work[j];若找到,执行步骤(3),否则,执行步骤(4)】。
                                          当进程Pi获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:【Work[j]:= Work[j]+Allocation[i,j];】【Finish[i]:=true;】【go to step (2);】
                                          如果所有进程的Finish[i]=true都满足,则表示系统处于安全状态;否则,系统处于不安全状态。

银行家算法实例
  假定系统中有五个进程{P0,P1,P2,P3,P4}和三类资源{A,B,C},各种资源的数量分别为10、5、7,在T0时刻的资源分配情况如下图所示:

T0时刻的安全性:利用安全性算法对T0时刻的资源分配情况进行分析,判定在P1发出请求向量Request_1(1,0,2)之前是否安全?即是否存在一个安全序列?

利用安全性算法对T0时刻的资源分配情况进行分析(见下图所示)可知,在T0时刻存在着一个安全序列{P1,P3,P4,P2,P0},故系统是安全的:(P1发出请求向量Request1(1,0,2)之前)

2. P1请求资源:P1发出请求向量Request1(1,0,2),系统按银行家算法进行检查:
      ① Request1(1,0,2)≤Need1(1,2,2)
      ② Request1(1,0,2)≤Available1(3,3,2)
      ③ 系统先假定可为P1分配资源,并修改Available,Allocation1和Need1向量,由此形成的资源变化情况如本例第一图中的共色圆括号所示。
      ④ 再利用安全性算法检查此时系统是否安全。如下图所示:

3. P4请求资源:P4发出请求向量Request4(3,3,0),系统按银行家算法进行检查:
  ① Request4(3,3,0)≤Need4(4,3,1);
  ② Request4(3,3,0)>Available(2,3,0),让P4等待。
4. P0请求资源:P0发出请求向量Request0(0,2,0),系统按银行家算法进行检查:
  ① Request0(0,2,0)≤Need0(7,4,3);
  ② Request0(0,2,0)≤Available(2,3,0);
  ③ 系统暂时先假定可为P0分配资源,并修改有关数据,如下图所示。

5. 进行安全性检查:可用资源Available(2,1,0)已不能满足任何进程的需要,故系统进入不安全状态,此时系统不分配资源。如果在银行家算法中,把P0发出的请求向量改为Request0(0,1,0),系统是否能将资源分配给它,请读者考虑。

原文地址:https://www.cnblogs.com/kangxinxin/p/9829598.html

时间: 2024-10-13 20:35:23

《操作系统、预防进程死锁的银行家算法》的相关文章

CI框架源码阅读笔记3 全局函数Common.php

从本篇开始,将深入CI框架的内部,一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说,全局函数具有最高的加载优先权,因此大多数的框架中BootStrap引导文件都会最先引入全局函数,以便于之后的处理工作). 打开Common.php中,第一行代码就非常诡异: if ( ! defined('BASEPATH')) exit('No direct script access allowed'); 上一篇(CI框架源码阅读笔记2 一切的入口 index

IOS测试框架之:athrun的InstrumentDriver源码阅读笔记

athrun的InstrumentDriver源码阅读笔记 作者:唯一 athrun是淘宝的开源测试项目,InstrumentDriver是ios端的实现,之前在公司项目中用过这个框架,没有深入了解,现在回来记录下. 官方介绍:http://code.taobao.org/p/athrun/wiki/instrumentDriver/ 优点:这个框架是对UIAutomation的java实现,在代码提示.用例维护方面比UIAutomation强多了,借junit4的光,我们可以通过junit4的

Yii源码阅读笔记 - 日志组件

?使用 Yii框架为开发者提供两个静态方法进行日志记录: Yii::log($message, $level, $category);Yii::trace($message, $category); 两者的区别在于后者依赖于应用开启调试模式,即定义常量YII_DEBUG: defined('YII_DEBUG') or define('YII_DEBUG', true); Yii::log方法的调用需要指定message的level和category.category是格式为“xxx.yyy.z

源码阅读笔记 - 1 MSVC2015中的std::sort

大约寒假开始的时候我就已经把std::sort的源码阅读完毕并理解其中的做法了,到了寒假结尾,姑且把它写出来 这是我的第一篇源码阅读笔记,以后会发更多的,包括算法和库实现,源码会按照我自己的代码风格格式化,去掉或者展开用于条件编译或者debug检查的宏,依重要程度重新排序函数,但是不会改变命名方式(虽然MSVC的STL命名实在是我不能接受的那种),对于代码块的解释会在代码块前(上面)用注释标明. template<class _RanIt, class _Diff, class _Pr> in

CI框架源码阅读笔记5 基准测试 BenchMark.php

上一篇博客(CI框架源码阅读笔记4 引导文件CodeIgniter.php)中,我们已经看到:CI中核心流程的核心功能都是由不同的组件来完成的.这些组件类似于一个一个单独的模块,不同的模块完成不同的功能,各模块之间可以相互调用,共同构成了CI的核心骨架. 从本篇开始,将进一步去分析各组件的实现细节,深入CI核心的黑盒内部(研究之后,其实就应该是白盒了,仅仅对于应用来说,它应该算是黑盒),从而更好的去认识.把握这个框架. 按照惯例,在开始之前,我们贴上CI中不完全的核心组件图: 由于BenchMa

CI框架源码阅读笔记2 一切的入口 index.php

上一节(CI框架源码阅读笔记1 - 环境准备.基本术语和框架流程)中,我们提到了CI框架的基本流程,这里这次贴出流程图,以备参考: 作为CI框架的入口文件,源码阅读,自然由此开始.在源码阅读的过程中,我们并不会逐行进行解释,而只解释核心的功能和实现. 1.       设置应用程序环境 define('ENVIRONMENT', 'development'); 这里的development可以是任何你喜欢的环境名称(比如dev,再如test),相对应的,你要在下面的switch case代码块中

Apache Storm源码阅读笔记

欢迎转载,转载请注明出处. 楔子 自从建了Spark交流的QQ群之后,热情加入的同学不少,大家不仅对Spark很热衷对于Storm也是充满好奇.大家都提到一个问题就是有关storm内部实现机理的资料比较少,理解起来非常费劲. 尽管自己也陆续对storm的源码走读发表了一些博文,当时写的时候比较匆忙,有时候衔接的不是太好,此番做了一些整理,主要是针对TridentTopology部分,修改过的内容采用pdf格式发布,方便打印. 文章中有些内容的理解得益于徐明明和fxjwind两位的指点,非常感谢.

CI框架源码阅读笔记4 引导文件CodeIgniter.php

到了这里,终于进入CI框架的核心了.既然是"引导"文件,那么就是对用户的请求.参数等做相应的导向,让用户请求和数据流按照正确的线路各就各位.例如,用户的请求url: http://you.host.com/usr/reg 经过引导文件,实际上会交给Application中的UsrController控制器的reg方法去处理. 这之中,CodeIgniter.php做了哪些工作?我们一步步来看. 1.    导入预定义常量.框架环境初始化 之前的一篇博客(CI框架源码阅读笔记2 一切的入

jdk源码阅读笔记之java集合框架(二)(ArrayList)

关于ArrayList的分析,会从且仅从其添加(add)与删除(remove)方法入手. ArrayList类定义: p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Monaco } span.s1 { color: #931a68 } public class ArrayList<E> extends AbstractList<E> implements List<E> ArrayList基本属性: /** *

dubbo源码阅读笔记--服务调用时序

上接dubbo源码阅读笔记--暴露服务时序,继续梳理服务调用时序,下图右面红线流程. 整理了调用时序图 分为3步,connect,decode,invoke. 连接 AllChannelHandler.connected(Channel) line: 38 HeartbeatHandler.connected(Channel) line: 47 MultiMessageHandler(AbstractChannelHandlerDelegate).connected(Channel) line: