如何根据前序、中序、后序遍历还原二叉树(转)

原文:https://blog.csdn.net/yanerhao/article/details/45175943

面试题目或多或少会出现这样的选择题或者简答题:

首先我们得知道概念:

前序遍历:先访问当前节点,再访问当前节点的左子树,最后访问当前节点的右子树。对于二叉树,深度遍历与此同。规律:根在前;子树在根后且左子树比右子树靠前,且第一个就是根节点;

中序遍历:先访问当前节点的左子树,然后访问当前节点,最后是当前节点的右子树,二叉树,中序遍历会得到数据升序效果。规律:根在中;左子树在跟左边,右子树在根右边,左边部分是根结点的左子树的中序遍历序列,右边部分是根结点的右子树的中序遍历序列 ;

后序遍历:先访问当前节点的左子树,然后是当前节点的又子树,最后是当前节点。规律:根在后;子树在根前且左子树比右子树靠前,且最后一个节点是根节点。

一、前序+中序

1. 根据前序序列的第一个元素建立根结点;
2. 在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3. 在前序序列中确定左右子树的前序序列;
4. 由左子树的前序序列和中序序列建立左子树;
5. 由右子树的前序序列和中序序列建立右子树。

如:已知一棵二叉树的先序遍历序列和中序遍历序列分别是abdgcefh、dgbaechf,求二叉树及后序遍历序列。

先序:abdgcefh--->a bdg cefh

中序:dgbaechf---->dgb a echf

得出结论:a是树根,a有左子树和右子树,左子树有bdg结点,右子树有cefh结点。

先序:bdg--->b dg

中序:dgb --->dg b

得出结论:b是左子树的根结点,b无右子树,有左子树。

先序:dg---->d g

中序:dg----->dg

得出结论:d是b左子树的根节点,d无左子树,g是d的右子树

然后对于a 的右子树类似可以推出

最后还原: a

b c

d e f

g h

后序遍历:gdbehfca

二、后序+中序:

已知一棵二叉树的后序序列和中序序列,构造该二叉树的过程如下:
1. 根据后序序列的最后一个元素建立根结点;
2. 在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3. 在后序序列中确定左右子树的后序序列;
4. 由左子树的后序序列和中序序列建立左子树;
5. 由右子树的后序序列和中序序列建立右子树

如还是上面题目:如:已知一棵二叉树的后序遍历序列和中序遍历序列分别是gdbehfca、dgbaechf,求二叉树

后序:gdbehfca---->gdb ehfc a

中序:dgbaechf----->dgb a echf

得出结论:a是树根,a有左子树和右子树,左子树有bdg结点,右子树有cefh结点。

后序:gdb---->gd b

中序:dgb----->dg b

得出结论:b是a左子树的根节点,无右子树,有左子树dg。

后序:gd---->g d

中序:dg----->d g

得出结论:d是b的左子树根节点,g是d的右子树。

然后对于a 的右子树类似可以推出。然后还原。

三、前序+后序

前序和后序在本质上都是将父节点与子结点进行分离,但并没有指明左子树和右子树的能力,因此得到这两个序列只能明确父子关系,而不能确定一个二叉树。 故此法无。不能唯一确定一个二叉树。
---------------------

原文:https://blog.csdn.net/yanerhao/article/details/45175943

原文地址:https://www.cnblogs.com/moomcake/p/10026497.html

时间: 2024-11-10 01:07:52

如何根据前序、中序、后序遍历还原二叉树(转)的相关文章

【LeetCode】106. Construct Binary Tree from Inorder and Postorder Traversal-通过中序和后续遍历还原二叉树

一.描述: 二.思路: 二叉树的中序遍历和前序遍历或和后续遍历能唯一确定一节课二叉树,即2中还原方式都需要中序遍历才能完成: 设二叉树的前序遍历序列为{1, 2, 4, 5, 3, 6},中序遍历序列为{4,2,5,1, 3, 6}:(红色标记表示以还原节点!!!) (1)-前序遍历的第一个节点是二叉树的根节点,{1, 2, 4, 5, 3, 6},对应中序中的位置是{4,2,5,1, 3, 6},所以中序序列中的 '1' 之前的全部元素为左子树元素,'1'之后的为右子树元素: (2)-左子树对

算法实验-二叉树的创建和前序-中序-后序-层次 遍历

对于二叉树的创建我是利用先序遍历的序列进行创建 能够对于树节点的内容我定义为char型变量 '0'为空,即此处的节点不存在 头文件 Tree.h //链式二叉树的头文件 #pragma once #include<iostream> #include<queue> using namespace std; class BinaryTreeNode { public: char data; BinaryTreeNode *leftChild,*rightChild; BinaryTr

二叉树的前序中序后序遍历相互求法

二叉树的前中后序遍历,他们的递归非递归.还有广度遍历,参见二叉树的前中后序遍历迭代&广度遍历和二叉树的前中后序遍历简单的递归 现在记录已知二叉树的前序中序后序遍历的两个,求另外一个.一般,这两个中一定有中序遍历. 1.已知前序和中序,求后序遍历: 前序:ABDECFG  中序:DBEAFCG 思路简单:前序的第一个节点就是根节点, 中序中找到根节点的位置,根节点之前是其左子树,之后是右子树   按此顺序,依次在左子树部分遍历,右子树部分遍历 C++ 代码: TreeNode *BinaryTre

前序中序后序遍历非递归实现

#include<iostream> #include<vector> #include<stack> #include<string> #include<algorithm> #include<numeric> using namespace std; class node{ public: int val; node* left; node* right; node():val(0),left(NULL),right(NULL){

算法进阶面试题03——构造数组的MaxTree、最大子矩阵的大小、2017京东环形烽火台问题、介绍Morris遍历并实现前序/中序/后序

接着第二课的内容和带点第三课的内容. (回顾)准备一个栈,从大到小排列,具体参考上一课.... 构造数组的MaxTree [题目] 定义二叉树如下: public class Node{ public int value; public Node left; public Node right; public Node(int data){ this.value=data; } } 一个数组的MaxTree定义如下: ◆ 数组必须没有重复元素 ◆ MaxTree是一颗二叉树,数组的每一个值对应一

已知二叉树前、中序遍历,求后序 / 已知二叉树中、后序遍历,求前序

void solve(int start,int end,int root) { // 前序和中序 -> 后序 // 每次调用solve()函数,传入pre-order的start,end,root if (start > end) // 递归边界 return; int i = start; while (i < end && in.at(i) != pre.at(root)) // 找到左右子树的分割点 i++; solve(start, i - 1, root +

经典白话算法之二叉树中序前序序列(或后序)求解树

这种题一般有二种形式,共同点是都已知中序序列.如果没有中序序列,是无法唯一确定一棵树的. <1>已知二叉树的前序序列和中序序列,求解树. 1.确定树的根节点.树根是当前树中所有元素在前序遍历中最先出现的元素. 2.求解树的子树.找出根节点在中序遍历中的位置,根左边的所有元素就是左子树,根右边的所有元素就是右子树.若根节点左边或右边为空,则该方向子树为空:若根节点 边和右边都为空,则根节点已经为叶子节点. 3.递归求解树.将左子树和右子树分别看成一棵二叉树,重复1.2.3步,直到所有的节点完成定

日常学习随笔-用链表的形式实现普通二叉树的新增、查找、遍历(前、中、后序)等基础功能(侧重源码+说明)

一.二叉树 1.二叉树的概念 二叉树是每个节点最多有两个子树的树结构.通常子树被称作"左子树"(left subtree)和"右子树"(right subtree),其次序不能任意颠倒. 2.性质 (1)若二叉树的层次从0开始,则在二叉树的第i层至多有2^i个结点(i>=0): (2)高度为k的二叉树最多有2^(k+1) - 1个结点(k>=-1). (空树的高度为-1): (3)对任何一棵二叉树,如果其叶子结点(度为0)数为m, 度为2的结点数为n,

根据先序、中序、后序遍历还原二叉树

遍历方式的转至二叉树的四种遍历方式 首先我们要知道三种遍历方式的规律: 先序遍历:跟在前,子树的根在后,左子树比右子树考前,且第一个就是根节点. 中序遍历:左子树在根左边,右子树在根右边,左边的部分是根节点的左子树的中序遍 历序列,右边部分是根节点右子树的中序遍历序列. 后序遍历:根在后,子树在根前且左子树比右子树靠前,且最后一个节点是根节点. 一.先序+中序 根据先序序列的第一个元素建立根节点 在中序序列中找到该元素,确定根节点的左右子树的中序序列 在先序序列中确定左右子树的先序序列 由左子树

二叉树的遍历方法之层序-先序-中序-后序遍历的简单讲解和代码示例

二叉树的基础性质及二叉树的建立参见前面两篇博文: http://blog.csdn.net/why850901938/article/details/51052936 http://blog.csdn.net/why850901938/article/details/51052156 首先为了讲解方便,我建立了如图所示的二叉树: 取名为:树A 1.何为层序遍历? 层序遍历就是按照二叉树的层次由上到下的进行遍历,每一层要求访问的顺序为从左到右: 以树A为例,层序遍历得到的结果为: 5 2 6 1