Google的机器学习速成课程
- 机器学习速成课程(MLCC,machine-learning crash-course):https://developers.google.com/machine-learning/crash-course/
- 机器学习术语表:https://developers.google.com/machine-learning/glossary/
- 基本全程中文,程共25节,大约15小时,包含40多项练习,有对算法实际运用的互动直观展示,可以更容易地学习和实践机器学习概念。
练习环境
在本地运行编程练习
- https://developers.google.com/machine-learning/crash-course/running-exercises-locally
- 安装Jupyter,并运行Jupyter Notebook (.ipynb) 格式的编程练习。
- 下载练习:http://download.mlcc.google.com/mledu-exercises/mlcc-exercises_en.zip
Colaboratory
- https://colab.research.google.com/notebooks/welcome.ipynb
- 免费的Jupyter笔记本环境,直接在浏览器中运行编程练习,不需要进行任何设置就可以使用,并且完全在云端运行。
前提条件和准备工作
https://developers.google.com/machine-learning/crash-course/prereqs-and-prework
前提条件
掌握入门级代数知识。
您应该了解变量和系数、线性方程式、函数图和直方图(熟悉对数和导数等更高级的数学概念会有帮助,但不是必需条件)。
熟练掌握编程基础知识,并且具有一些使用 Python 进行编码的经验。
机器学习速成课程中的编程练习是通过 TensorFlow 并使用 Python 进行编码的。
您无需拥有任何 TensorFlow经验,但应该能够熟练阅读和编写包含基础编程结构(例如,函数定义/调用、列表和字典、循环和条件表达式)的 Python 代码。
准备工作
Pandas 使用入门
机器学习速成课程中的编程练习使用 Pandas 库来操控数据集。
如果您不熟悉 Pandas,建议您先学习Pandas 简介教程,该教程介绍了练习中使用的主要 Pandas 功能。
低阶 TensorFlow 基础知识
机器学习速成课程中的编程练习使用 TensorFlow 的高阶 tf.estimator API 来配置模型。
如果您有兴趣从头开始构建 TensorFlow 模型,请学习以下教程:
- TensorFlow Hello World:在低阶 TensorFlow 中编码的“Hello World”。
- TensorFlow 编程概念:演示了 TensorFlow 应用中的基本组件:张量、指令、图和会话。
- 创建和操控张量:张量快速入门 - TensorFlow 编程中的核心概念。此外,还回顾了线性代数中的矩阵加法和乘法概念。
主要概念和工具
https://developers.google.com/machine-learning/crash-course/prereqs-and-prework#key-concepts
数学
代数
- 变量、系数和函数
- 线性方程式
- 对数和对数方程式
- S型函数
线性代数
- 张量和张量等级
- 矩阵乘法
三角学
- Tanh(作为激活函数进行讲解,无需提前掌握相关知识)
统计信息
- 均值、中间值、离群值和标准偏差
- 能够读懂直方图
微积分(可选,适合高级主题)
- 导数概念(您不必真正计算导数)
- 梯度或斜率
- 偏导数(与梯度紧密相关)
- 链式法则(带您全面了解用于训练神经网络的反向传播算法)
Python
The Python Tutorial:https://docs.python.org/3/tutorial/
基础 Python
- 定义和调用函数:使用位置和关键字参数
- 字典、列表、集合(创建、访问和迭代)
- for 循环:包含多个迭代器变量的 for 循环(例如 for a, b in [(1,2), (3,4)])
- if/else 条件块和条件表达式
- 字符串格式(例如 ‘%.2f‘ % 3.14)
- 变量、赋值、基本数据类型(int、float、bool、str)
- pass 语句
中级 Python
- 列表推导式
- Lambda 函数
第三方Python库(无需提前熟悉,在需要时查询相关内容)
Matplotlib(适合数据可视化)
- pyplot 模块
- cm 模块
- gridspec 模块
Seaborn(适合热图)
- heatmap 函数
Pandas(适合数据处理)
- DataFrame 类
NumPy(适合低阶数学运算)
- linspace 函数
- random 函数
- array 函数
- arange 函数
scikit-learn(适合评估指标)
- metrics 模块
Bash
- Bash参考手册:https://tiswww.case.edu/php/chet/bash/bashref.html
- Bash快速参考表:https://github.com/LeCoupa/awesome-cheatsheets/blob/master/languages/bash.sh
- 了解Shell(简明教程,提供在线运行环境):http://www.learnshell.org/
原文地址:https://www.cnblogs.com/anliven/p/6107783.html
时间: 2024-12-11 23:23:44