AI - Google的机器学习速成课程

Google的机器学习速成课程

练习环境

在本地运行编程练习

Colaboratory

前提条件和准备工作

https://developers.google.com/machine-learning/crash-course/prereqs-and-prework

前提条件

掌握入门级代数知识。
    您应该了解变量和系数、线性方程式、函数图和直方图(熟悉对数和导数等更高级的数学概念会有帮助,但不是必需条件)。

熟练掌握编程基础知识,并且具有一些使用 Python 进行编码的经验。
    机器学习速成课程中的编程练习是通过 TensorFlow 并使用 Python 进行编码的。
    您无需拥有任何 TensorFlow经验,但应该能够熟练阅读和编写包含基础编程结构(例如,函数定义/调用、列表和字典、循环和条件表达式)的 Python 代码。

准备工作

Pandas 使用入门
    机器学习速成课程中的编程练习使用 Pandas 库来操控数据集。
    如果您不熟悉 Pandas,建议您先学习Pandas 简介教程,该教程介绍了练习中使用的主要 Pandas 功能。

低阶 TensorFlow 基础知识
   机器学习速成课程中的编程练习使用 TensorFlow 的高阶 tf.estimator API 来配置模型。
   如果您有兴趣从头开始构建 TensorFlow 模型,请学习以下教程:
     - TensorFlow Hello World:在低阶 TensorFlow 中编码的“Hello World”。
     - TensorFlow 编程概念:演示了 TensorFlow 应用中的基本组件:张量、指令、图和会话。
     - 创建和操控张量:张量快速入门 - TensorFlow 编程中的核心概念。此外,还回顾了线性代数中的矩阵加法和乘法概念。

主要概念和工具

https://developers.google.com/machine-learning/crash-course/prereqs-and-prework#key-concepts

数学

代数
- 变量、系数和函数
- 线性方程式
- 对数和对数方程式
- S型函数

线性代数
- 张量和张量等级
- 矩阵乘法

三角学
- Tanh(作为激活函数进行讲解,无需提前掌握相关知识)

统计信息
- 均值、中间值、离群值和标准偏差
- 能够读懂直方图

微积分(可选,适合高级主题)
- 导数概念(您不必真正计算导数)
- 梯度或斜率
- 偏导数(与梯度紧密相关)
- 链式法则(带您全面了解用于训练神经网络的反向传播算法)

Python

The Python Tutorial:https://docs.python.org/3/tutorial/

基础 Python
- 定义和调用函数:使用位置和关键字参数
- 字典、列表、集合(创建、访问和迭代)
- for 循环:包含多个迭代器变量的 for 循环(例如 for a, b in [(1,2), (3,4)])
- if/else 条件块和条件表达式
- 字符串格式(例如 ‘%.2f‘ % 3.14)
- 变量、赋值、基本数据类型(int、float、bool、str)
- pass 语句

中级 Python
- 列表推导式
- Lambda 函数

第三方Python库(无需提前熟悉,在需要时查询相关内容)

Matplotlib(适合数据可视化)
- pyplot 模块
- cm 模块
- gridspec 模块

Seaborn(适合热图)
- heatmap 函数

Pandas(适合数据处理)
- DataFrame 类

NumPy(适合低阶数学运算)
- linspace 函数
- random 函数
- array 函数
- arange 函数

scikit-learn(适合评估指标)
- metrics 模块

Bash

原文地址:https://www.cnblogs.com/anliven/p/6107783.html

时间: 2024-10-07 02:38:28

AI - Google的机器学习速成课程的相关文章

谷歌机器学习速成课程---3降低损失:迭代方法

迭代学习可能会让您想到"Hot and Cold"这种寻找隐藏物品(如顶针)的儿童游戏.在我们的游戏中,"隐藏的物品"就是最佳模型.刚开始,您会胡乱猜测("w1 的值为 0."),等待系统告诉您损失是多少.然后,您再尝试另一种猜测("w1 的值为 0.5."),看看损失是多少.哎呀,这次更接近目标了.实际上,如果您以正确方式玩这个游戏,通常会越来越接近目标.这个游戏真正棘手的地方在于尽可能高效地找到最佳模型. 下图显示了机器学

谷歌机器学习速成课程---1框架处理

本文内容摘自  谷歌机器学习免费课程MLCC: https://developers.google.com/machine-learning/crash-course/ ============================================================================================================================================= 什么是(监督式)机器学习?简单来说,它的定义如

谷歌机器学习速成课程---2深入了解机器学习(Descending into ML)

1.线性回归 人们早就知晓,相比凉爽的天气,蟋蟀在较为炎热的天气里鸣叫更为频繁.数十年来,专业和业余昆虫学者已将每分钟的鸣叫声和温度方面的数据编入目录.Ruth 阿姨将她喜爱的蟋蟀数据库作为生日礼物送给您,并邀请您自己利用该数据库训练一个模型,从而预测鸣叫声与温度的关系. 首先建议您将数据绘制成图表,了解下数据的分布情况: 图 1. 每分钟的鸣叫声与温度(摄氏度)的关系. 毫无疑问,此曲线图表明温度随着鸣叫声次数的增加而上升.鸣叫声与温度之间的关系是线性关系吗?是的,您可以绘制一条直线来近似地表

谷歌机器学习速成课程---3降低损失 (Reducing Loss):学习速率

正如之前所述,梯度矢量具有方向和大小.梯度下降法算法用梯度乘以一个称为学习速率(有时也称为步长)的标量,以确定下一个点的位置.例如,如果梯度大小为 2.5,学习速率为 0.01,则梯度下降法算法会选择距离前一个点 0.025 的位置作为下一个点. 超参数是编程人员在机器学习算法中用于调整的旋钮.大多数机器学习编程人员会花费相当多的时间来调整学习速率.如果您选择的学习速率过小,就会花费太长的学习时间: 图 6. 学习速率过小. 相反,如果您指定的学习速率过大,下一个点将永远在 U 形曲线的底部随意

谷歌机器学习速成课程---3降低损失 (Reducing Loss):梯度下降法

迭代方法图(图 1)包含一个标题为"计算参数更新"的华而不实的绿框.现在,我们将用更实质的方法代替这种华而不实的算法. 假设我们有时间和计算资源来计算 w1 的所有可能值的损失.对于我们一直在研究的回归问题,所产生的损失与 w1 的图形始终是凸形.换言之,图形始终是碗状图,如下所示: 图 2. 回归问题产生的损失与权重图为凸形. 凸形问题只有一个最低点:即只存在一个斜率正好为 0 的位置.这个最小值就是损失函数收敛之处. 通过计算整个数据集中 w1 每个可能值的损失函数来找到收敛点这种

Google发布机器学习平台Tensorflow游乐场~带你玩神经网络(转载)

Google发布机器学习平台Tensorflow游乐场-带你玩神经网络 原文地址:http://f.dataguru.cn/article-9324-1.html> 摘要: 昨天,Google发布了Tensorflow游乐场.Tensorflow是Google今年推出的机器学习开源平台.而有了Tensorflow游乐场,我们在浏览器中就可以训练自己的神经网络,还有酷酷的图像让我们更直观地了解神经网络的工作原理.今 ... 网络 工具 机器学习 神经网络 Tensorflow 昨天,Google发

台湾大学林轩田教授机器学习基石课程

参考:http://blog.csdn.net/qiusuoxiaozi/article/details/51558497 台湾大学林轩田教授机器学习基石课程理解及python实现----PLA

台湾大学林轩田教授机器学习基石课程理解及python实现----PLA

最近在班主任的带领下,开始观看台湾大学林轩田教授的机器学习基石课程,虽然吧,台湾人,汉语说得蛮6,但是还是听着怪怪的,不过内容非常值得刚刚入门的机器学习 小白学习,话不多说,直接进入正题. 1.基本介绍(貌似这里一般是应该背景介绍,但是,历史吗,自己去百度吧) (1)preceptron 翻译中文叫做感知器,如果你之前听说过神经网络的,它其实就是网络中的一个神经元,它自身的作用非常小,只能对于数据只能实现二分类,然而如果连成网络的 话,神经网络的每一层都可以作为一个线性函数或非线性函数,将函数复

台大机器学习基石课程之机器学习基本原理和概念

前段时间在网上看到了coursera公开课台大机器学习基石课程,比较全面而且清晰地将机器学习所需的基本知识.理论基础给与了讲解.foundation中有几个比较重要的概念和思想,先进行一下回顾,然后开启对后续技法课程的学习和总结. 1. VC dimension(VC维,非常重要的概念) 能够shutter 二分类问题的上限.也是衡量模型复杂度的工具(类似自由度的概念).之所以这个概念比较重要是它能够解释为什么机器能够学习. 1),以概率统计中常用的手段:用sample来估计整体,机器学习也是如