[leetcode]426. Convert Binary Search Tree to Sorted Doubly Linked List二叉搜索树转有序双向链表

Convert a BST to a sorted circular doubly-linked list in-place. Think of the left and right pointers as synonymous to the previous and next pointers in a doubly-linked list.

Let‘s take the following BST as an example, it may help you understand the problem better:

We want to transform this BST into a circular doubly linked list. Each node in a doubly linked list has a predecessor and successor. For a circular doubly linked list, the predecessor of the first element is the last element, and the successor of the last element is the first element.

The figure below shows the circular doubly linked list for the BST above. The "head" symbol means the node it points to is the smallest element of the linked list.

Specifically, we want to do the transformation in place. After the transformation, the left pointer of the tree node should point to its predecessor, and the right pointer should point to its successor. We should return the pointer to the first element of the linked list.

The figure below shows the transformed BST. The solid line indicates the successor relationship, while the dashed line means the predecessor relationship.

原文地址:https://www.cnblogs.com/liuliu5151/p/9808269.html

时间: 2024-10-09 10:44:11

[leetcode]426. Convert Binary Search Tree to Sorted Doubly Linked List二叉搜索树转有序双向链表的相关文章

LeetCode 426. Convert Binary Search Tree to Sorted Doubly Linked List

看起来很难,但是仔细想一下,实质就是二叉树的中序遍历的问题,中序遍历有递归和非递归(至少两种写法). 递归: class Solution { public: Node *prev; //实质是指向最后一个元素的指针 Node* treeToDoublyList(Node* root) { if (root==NULL) return NULL; Node *dummy=new Node(0,NULL,NULL); prev = dummy; inorder(root); prev->right

426. Convert Binary Search Tree to Sorted Doubly Linked List

426. Convert Binary Search Tree to Sorted Doubly Linked List https://www.youtube.com/watch?v=FsxTX7-yhOw&t=1210s https://docs.google.com/document/d/1IIn5rXrUumqpxRrMKo76FbBx1ibTBDGso5rfENmkabw/edit class Solution { public Node treeToDoublyList(Node r

426. Convert Binary Search Tree to Sorted Doubly Linked List - Medium

Convert a BST to a sorted circular doubly-linked list in-place. Think of the left and right pointers as synonymous to the previous and next pointers in a doubly-linked list. Let's take the following BST as an example, it may help you understand the p

【LeetCode】Validate Binary Search Tree

Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys

LeetCode OJ - Validate Binary Search Tree

题目: Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with

leetcode 之 Recover Binary Search Tree

Recover Binary Search Tree Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing its structure. Note: A solution using O(n) space is pretty straight forward. Could you devise a constant space solution? c

【LeetCode】 Recover Binary Search Tree BST 中序遍历

题目:Recover Binary Search Tree <span style="font-size:18px;">/* * LeetCode: recover the binary search tree * 题目:二叉树中有两个节点被交换了位置,找出它们,并且将它们换回来,要求用o(n)的连续空间 * 知识点:1.BST树的特点:中序遍历后的节点的排列是按照非降的顺序 * 思路:按照特点中序遍历,当遇到逆序的节点则按照保存相关节点,注意分为,交换的两个点是否相邻的两

leetcode -day27 Recover Binary Search Tree &amp; Interleaving String

1.  Recover Binary Search Tree Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing its structure. Note: A solution using O(n) space is pretty straight forward. Could you devise a constant space solut

[Leetcode][BST][Validate Binary Search Tree]

判断一颗树是不是二分查找树,非常经典基础的一个算法. 我很久之前第一次做的时候,是先求出来了树的前序遍历的结果,然后判断这个数组排序后是否和排序前相同,还要判断重复虾米的,很纠结的一种做法. 后来思考了一下怎么用递归的思路做,觉得应该根据定义返回两个子树的最大值和最小值,写了一会代码,发现好麻烦,不太对的样子. 后来看了题解,发现是用了一种反向的思维,把上下界从树的顶端传下去,而不是自下而上的约束.作者太机智了. 1 /** 2 * Definition for binary tree 3 *