To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10920 Accepted Submission(s): 5229
Problem Description
Given
a two-dimensional array of positive and negative integers, a
sub-rectangle is any contiguous sub-array of size 1 x 1 or greater
located within the whole array. The sum of a rectangle is the sum of all
the elements in that rectangle. In this problem the sub-rectangle with
the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The
input consists of an N x N array of integers. The input begins with a
single positive integer N on a line by itself, indicating the size of
the square two-dimensional array. This is followed by N 2 integers
separated by whitespace (spaces and newlines). These are the N 2
integers of the array, presented in row-major order. That is, all
numbers in the first row, left to right, then all numbers in the second
row, left to right, etc. N may be as large as 100. The numbers in the
array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
实质上是最大子段和问题,最大子矩阵我们将其所有的行都枚举出来,然后将其合并成一行,然后就可以用最大连续子段和求最大值,得到最大子矩阵。
最大子段和:
令b[j]表示以位置 j 为终点的所有子区间中和最大的一个
子问题:如j为终点的最大子区间包含了位置j-1,则以j-1为终点的最大子区间必然包括在其中
如果b[j-1] >0, 那么显然b[j] = b[j-1] + a[j],用之前最大的一个加上a[j]即可,因为a[j]必须包含
如果b[j-1]<=0,那么b[j] = a[j] ,因为既然最大,前面的负数必然不能使你更大
状态转移方程 dp[j] = max(dp[j-1]+a[j],a[j])(0<j<=n)
#include<iostream> #include<cstdio> #include<algorithm> #include <string.h> #include <math.h> using namespace std; const int N = 101; int mp[N][N],b[N]; int n; int getMax() { int t = 0,mx = -1; int dp[N+1]= {0}; for(int i=1; i<=n; i++)///从1开始枚举 { if(dp[i-1]>0) dp[i] = dp[i-1]+b[i-1]; else dp[i]=b[i-1]; mx = max(mx,dp[i]); } return mx; } int solve() { int mx = -1; for(int i=0; i<n; i++) { for(int j=i; j<n; j++) { memset(b,0,sizeof(b)); for(int k=0; k<n; k++) for(int l=i; l<=j; l++) b[k]+=mp[l][k]; mx = max(mx,getMax()); } } return mx; } int main() { while(scanf("%d",&n)!=EOF) { for(int i=0; i<n; i++) { for(int j=0; j<n; j++) scanf("%d",&mp[i][j]); } int mx = solve(); printf("%d\n",mx); } return 0; }