POJ训练计划1459_Power Network(网络流最大流/Dinic)

解题报告

这题建模实在是好建,,,好贱,,,

给前向星给跪了,纯dinic的前向星竟然TLE,sad,,,回头看看优化,,,

矩阵跑过了,2A,sad,,,

/*************************************************************************
	> File Name:	PowerN.cpp
	> Author:		_nplus
	> Mail:	    [email protected]
	> Time:		2014年07月19日 星期六 09时30分23秒
 ************************************************************************/

#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#include<iostream>
#include<algorithm>
#define inf 99999999
#define N 510
#define M N*N
using namespace std;
int edge[N][N],l[N],n,m,nc,np;
int bfs()
{
    queue<int >Q;
    memset(l,-1,sizeof(l));
    while(!Q.empty())
        Q.pop();
    l[n]=0;
    Q.push(n);
    while(!Q.empty())
    {
        int u=Q.front();
        Q.pop();
        for(int i=0; i<=n+1; i++)
        {
            if(edge[u][i]&&l[i]==-1)
            {
                l[i]=l[u]+1;
                Q.push(i);
            }
        }
    }
    if(l[n+1]>0)return 1;
    else return 0;
}
int dfs(int x,int f)
{
    if(x==n+1)return f;
    int a;
    for(int i=0; i<=n+1; i++)
    {
        if(edge[x][i]&&(l[i]==l[x]+1)&&(a=dfs(i,min(edge[x][i],f))))
        {
            edge[x][i]-=a;
            edge[i][x]+=a;
            return a;
        }
    }
    return 0;
}
int main()
{
    int i,j,u,v,w;
    while(~scanf("%d%d%d%d",&n,&np,&nc,&m))
    {
        memset(edge,0,sizeof(edge));
        for(i=0; i<m; i++)
        {
            while(getchar()!='(');
            scanf("%d,%d)%d",&u,&v,&w);
            edge[u][v]=w;
        }
        for(i=0; i<np; i++)
        {
            while(getchar()!='(');
            scanf("%d)%d",&v,&w);
            edge[n][v]=w;
        }
        for(i=0; i<nc; i++)
        {
            while(getchar()!='(');
            scanf("%d)%d",&u,&w);
            edge[u][n+1]=w;
        }
        int a,flow=0;
        while(bfs())
        {
            while(a=dfs(n,inf))
            {
                flow+=a;
            }
        }
        printf("%d\n",flow);
    }
}

Power Network

Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 22571   Accepted: 11819

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount
0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power
transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of
Con.

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y.
The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets
(u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set
ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can
occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
         (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
         (0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second
data set encodes the network from figure 1.

Source

POJ训练计划1459_Power Network(网络流最大流/Dinic)

时间: 2024-10-05 05:07:07

POJ训练计划1459_Power Network(网络流最大流/Dinic)的相关文章

POJ训练计划2516_Minimum Cost(网络流/费用流)

解题报告 题意: 有n个商店,m个提供商,k种商品</span> n*k的矩阵,表示每个商店需要每个商品的数目: m*k矩阵,表示每个提供商拥有每个商品的个数 然后对于每个物品k,都有n*m的矩阵 i行j列表示 从j提供商向i商店运送一个k商品的代价是多少 判断所有的仓库能否满足所有客户的需求,如果可以,求出最少的运输总费用 思路: 建图的题,不能直接把所有信息建成图,因为n和m跟k都有关系,如果那样子建图的话,就要把k种拆成m类,每个仓库连向该仓库的第k种,然后再和n连线,有费用, 不过这样

POJ 1459 Power Network(网络流 最大流 多起点,多汇点)

Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 22987   Accepted: 12039 Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied

POJ 1459 Power Network (网络流最大流基础 多源点多汇点 Edmonds_Karp算法)

Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 24056   Accepted: 12564 Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied

POJ训练计划2195_Going Home(网络流/费用流)

解题报告 题目传送门 思路: bfs建图跑一下费用流就行. #include <iostream> #include <cstdio> #include <cstring> #include <queue> #define inf 0x3f3f3f3f using namespace std; struct E { int v,cost,cap,next; } edge[100000]; int head[1000],cnt,dis[1000],pre[10

POJ 1273 Drainage Ditches(网络流 最大流)

Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 55893   Accepted: 21449 Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by

poj 1459 Power Network, 最大流,多源多汇

点击打开链接 多源多汇最大流,虚拟一个源点s'和一个汇点t',原来的源点.汇点向它们连边. #include<cstdiO> #include<cstring> #include<iostream> #include<algorithm> #include<queue> #include<vector> using namespace std; const int maxn = 500 + 5; const int INF = 100

POJ 1459 &amp;amp;&amp;amp; ZOJ 1734--Power Network【最大流dinic】

Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 25108   Accepted: 13077 Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied

POJ 1459 &amp;&amp; ZOJ 1734--Power Network【最大流dinic】

Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 25108   Accepted: 13077 Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied

POJ 1273 Drainage Ditches (网络流最大流基础 Edmonds_Karp算法)

Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 59219   Accepted: 22740 Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by