python结巴(jieba)分词

python结巴(jieba)分词

一、特点

1、支持三种分词模式:
  (1)精确模式:试图将句子最精确的切开,适合文本分析。
  (2)全模式:把句子中所有可以成词的词语都扫描出来,速度非常快,但是不能解决歧义。
  (3)搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
2、支持繁体分词
3、支持自定义词典

二、实现

结巴分词的实现原理主要有一下三点:
(1)基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)。
(2)采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合。
(3)对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法。

三、应用

我们来演示一下结巴分词的主要功能

1、分词

 1 #-*- coding:utf-8 -*-
 2
 3
 4 import jieba
 5
 6
 7
 8 ‘‘‘
 9 cut方法有两个参数
10 1)第一个参数是我们想分词的字符串
11 2)第二个参数cut_all是用来控制是否采用全模式
12 ‘‘‘
13
14 #全模式
15 word_list = jieba.cut("今天天气真好。亲爱的,我们去远足吧!",cut_all=True)
16 print "全模式:","|".join(word_list)
17 #精确模式 , 默认就是精确模式
18 word_list = jieba.cut("今天天气真好。亲爱的,我们去远足吧!",cut_all=False)
19 print "精确模式:","|".join(word_list)
20 #搜索引擎模式
21 word_list = jieba.cut_for_search("今天天气真好。亲爱的,我们去远足吧!")
22 print "搜索引擎:","|".join(word_list)

2、添加自定义词典

虽然jieba有新词识别能力,但是自己添加新词可以保证更高的正确率。
开发者可以根据自己的需要添加自定义词典,以便包含jieba词库里没有的词。
例:小红今天我们还去以前经常去的地方远足吗?要不咱们换个地方吧!园小园怎么样?没问题小豆芽

自定义词典(cu.txt):
园小园 5
小豆芽 3 nr

一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),中间用空格隔开。

1 #-*- coding:utf-8 -*-
2 import jieba
3
4 jieba.load_userdict("./cu.txt")
5 word_list = jieba.cut("小红今天我们还去以前经常去的地方远足吗?要不咱们换个地方吧!园小园怎么样?没问题小豆芽")
6 print "|".join(word_list)

3、关键词提取

1)第一个参数(setence)为待提取的文本。
2)topK为返回几个TF/IDF权重最大的关键词,默认值为20,可以自己指定。

1 #-*- coding:utf-8 -*-
2 import jieba.analyse as al
3
4 content = open("./topk.txt","rb").read()
5 word_topk = al.extract_tags(content,topK=4)
6 print "|".join(word_topk)

4、词性标注

标注句子分词后每个词的词性,采用和ictclas兼容的标记法。

1 #-*- coding:utf-8 -*-
2 import jieba.posseg as pseg
3
4 words = pseg.cut("青岛北京是不错的地方")
5 for word in words:
6     print word.word,word.flag

运行结果:
青岛 ns
北京 ns
是 v
不错 a
的 uj
地方 n

5、并行分词(只能在linux系统上运行)

将要进行分词的文本按行分隔,把各行文本分配到多个python进程中去,然后归并结果,从而使分词速度提升。 
基于python的multiprocessing模块,目前不支持windows系统。

#-*- coding:utf-8 -*-
import jieba
#开启并行分词模式,参数为参与并行分词的进程数
jieba.enable_parallel(2)
#关闭并行分词
#jieba.disable_parallel()
content = open("./topk.txt","rb")
words = jieba.cut(content)
print "|".join(words)

6、模块初始化机制的改变:lazy load (从0.28版本开始)

下载你所需要的词典,然后覆盖jieba/dict.txt或者用jieba.set_dictionary("")将其覆盖。

1 #-*- coding:utf-8 -*-
2
3 import jieba
4 jieba.set_dictionary("./dict.txt")
5 content = open("./content.txt","rb").read()
6 words = jieba.cut(content)
7 print "|".join(words)

7、Tokenize:返回词语在原文的起始位置

1)第一个参数为文本内容。
2)第二个参数mode可以不用默认模式,指定为“search”搜索引擎模式。

1 #-*- coding:utf-8 -*-
2 import jieba
3
4 result = jieba.tokenize(u‘今天天气真好。亲爱的,我们去远足吧!‘)
5 for token in result:
6     print "word %s\t\t start: %d \t\t end:%d" % (token[0],token[1],token[2])
时间: 2024-10-17 17:09:03

python结巴(jieba)分词的相关文章

Python使用jieba分词

# -*- coding: utf-8 -*- # Spyder (python 3.7) import pandas as pd import jieba import jieba.analyse as anls if __name__ == '__main__': data = pd.read_excel(r'空气指数评论.xlsx') # content为excel的列名 opinion_content = data['content'].dropna().values all_word

转]python 结巴分词(jieba)学习

原文  http://www.gowhich.com/blog/147 主题 中文分词Python 源码下载的地址:https://github.com/fxsjy/jieba 演示地址:http://jiebademo.ap01.aws.af.cm/ 特点 1,支持三种分词模式: a,精确模式,试图将句子最精确地切开,适合文本分析:     b,全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义:     c,搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召

[python] 使用Jieba工具中文分词及文本聚类概念

声明:由于担心CSDN博客丢失,在博客园简单对其进行备份,以后两个地方都会写文章的~感谢CSDN和博客园提供的平台.        前面讲述了很多关于Python爬取本体Ontology.消息盒InfoBox.虎扑图片等例子,同时讲述了VSM向量空间模型的应用.但是由于InfoBox没有前后文和语义概念,所以效果不是很好,这篇文章主要是爬取百度5A景区摘要信息,再利用Jieba分词工具进行中文分词,最后提出文本聚类算法的一些概念知识.        相关文章:        [Python爬虫]

Python自然语言处理学习——jieba分词

jieba--"结巴"中文分词是sunjunyi开发的一款Python中文分词组件,可以在Github上查看jieba项目. 要使用jieba中文分词,首先需要安装jieba中文分词,作者给出了如下的安装方法: 1.全自动安装:easy_install jieba 或者 pip install jieba / pip3 install jieba 2.半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py

Python 结巴分词

今天的任务是对txt文本进行分词,有幸了解到"结巴"中文分词,其愿景是做最好的Python中文分词组件.有兴趣的朋友请点这里. jieba支持三种分词模式: *精确模式,试图将句子最精确地切开,适合文本分析: *全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义: *搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词. 主要采用以下算法: *基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图

结巴中文分词使用学习(python)

中文分词工具:结巴分词 github地址:https://github.com/fxsjy/jieba 分词功能 精确模式(默认):试图将句子最精确地切开,适合文本分析: 全模式,把句子中所有的可以成词的词语都扫描出来,但是不能解决歧义: 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细. 注意:jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的 generator,并不是一个list列表.

python jieba分词工具

源码地址:https://github.com/fxsjy/jieba 演示地址:http://jiebademo.ap01.aws.af.cm/ 特点 1,支持三种分词模式: a,精确模式,试图将句子最精确地切开,适合文本分析:     b,全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义:     c,搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词. 2,支持繁体分词 3,支持自定义词典 安装 1,Python 2.x 下的安

python安装Jieba中文分词组件并测试

python安装Jieba中文分词组件 1.下载http://pypi.python.org/pypi/jieba/ 2.解压到解压到python目录下: 3.“win+R”进入cmd:依次输入如下代码: C:\Users\Administrator>cd D:\softwareIT\Python27\jieba-0.39 C:\Users\Administrator>d: D:\softwareIT\Python27\jieba-0.39>python setup.py install

Python:电商产品评论数据情感分析,jieba分词,LDA模型

本节涉及自然语言处理(NLP),具体涉及文本数据采集.预处理.分词.去停用词.词频分析.LDA主题模型 代码部分 1 # -*- coding: utf-8 -*- 2 """ 3 Created on Mon Oct 1 12:13:11 2018 4 5 @author: Luove 6 """ 7 8 import os 9 import pandas as pd 10 import jieba 11 from gensim import