Linux定时器 timerfd使用

英文使用手册原汁原味,一手资料。

NAME
       timerfd_create, timerfd_settime, timerfd_gettime - timers that notify via file descriptors

SYNOPSIS

1 #include <sys/timerfd.h>
2
3        int timerfd_create(int clockid, int flags);
4
5        int timerfd_settime(int fd, int flags,
6                            const struct itimerspec *new_value,
7                            struct itimerspec *old_value);
8
9        int timerfd_gettime(int fd, struct itimerspec *curr_value);

DESCRIPTION
       These  system  calls  create  and  operate  on  a timer that delivers timer expiration notifications via a file
       descriptor.  They provide an alternative to the use of setitimer(2) or timer_create(2), with the advantage that
       the file descriptor may be monitored by select(2), poll(2), and epoll(7).

The  use  of  these  three  system  calls  is  analogous  to  the use of timer_create(2), timer_settime(2), and
       timer_gettime(2).  (There is no analog of timer_getoverrun(2), since that functionality is provided by read(2),
       as described below.)

   timerfd_create()
       timerfd_create()  creates  a  new  timer  object, and returns a file descriptor that refers to that timer.  The
       clockid argument specifies the clock that is used to mark the  progress  of  the  timer,  and  must  be  either
       CLOCK_REALTIME  or CLOCK_MONOTONIC.  CLOCK_REALTIME is a settable system-wide clock.  CLOCK_MONOTONIC is a non‐
       settable clock that is not affected by discontinuous changes in the system clock (e.g., manual changes to  sys‐
       tem time).  The current value of each of these clocks can be retrieved using clock_gettime(2).

Starting  with  Linux  2.6.27,  the  following  values  may  be bitwise ORed in flags to change the behavior of
       timerfd_create():

TFD_NONBLOCK  Set the O_NONBLOCK file status flag on the new open file  description.   Using  this  flag  saves
                     extra calls to fcntl(2) to achieve the same result.

TFD_CLOEXEC   Set  the  close-on-exec (FD_CLOEXEC) flag on the new file descriptor.  See the description of the
                     O_CLOEXEC flag in open(2) for reasons why this may be useful.

In Linux versions up to and including 2.6.26, flags must be specified as zero.

  timerfd_settime()
       timerfd_settime() arms (starts) or disarms (stops) the timer referred to by the file descriptor fd.

The new_value argument specifies the initial expiration and interval for the timer.  The itimer structure  used
       for this argument contains two fields, each of which is in turn a structure of type timespec:

1            struct timespec {
2                time_t tv_sec;                /* Seconds */
3                long   tv_nsec;               /* Nanoseconds */
4            };
5
6            struct itimerspec {
7                struct timespec it_interval;  /* Interval for periodic timer */
8                struct timespec it_value;     /* Initial expiration */
9            };

new_value.it_value  specifies  the initial expiration of the timer, in seconds and nanoseconds.  Setting either
       field of new_value.it_value to a nonzero value arms the timer.  Setting both fields  of  new_value.it_value  to
       zero disarms the timer.

Setting  one  or  both  fields  of new_value.it_interval to nonzero values specifies the period, in seconds and
       nanoseconds,  for  repeated  timer  expirations  after   the   initial   expiration.    If   both   fields   of
       new_value.it_interval are zero, the timer expires just once, at the time specified by new_value.it_value.

The  flags argument is either 0, to start a relative timer (new_value.it_value specifies a time relative to the
       current value  of  the  clock  specified  by  clockid),  or  TFD_TIMER_ABSTIME,  to  start  an  absolute  timer
       (new_value.it_value  specifies  an  absolute  time  for the clock specified by clockid; that is, the timer will
       expire when the value of that clock reaches the value specified in new_value.it_value).

If the old_value argument is not NULL, then the itimerspec structure that it points to is used  to  return  the
       setting of the timer that was current at the time of the call; see the description of timerfd_gettime() follow‐
       ing.

timerfd_gettime()
       timerfd_gettime() returns, in curr_value, an itimerspec structure that contains  the  current  setting  of  the
       timer referred to by the file descriptor fd.

The  it_value field returns the amount of time until the timer will next expire.  If both fields of this struc‐
       ture are zero, then the timer is currently disarmed.  This field always contains a relative  value,  regardless
       of whether the TFD_TIMER_ABSTIME flag was specified when setting the timer.

The  it_interval  field returns the interval of the timer.  If both fields of this structure are zero, then the
       timer is set to expire just once, at the time specified by curr_value.it_value.

Operating on a timer file descriptor
       The file descriptor returned by timerfd_create() supports the following operations:

read(2)
              If the timer has already expired one  or  more  times  since  its  settings  were  last  modified  using
              timerfd_settime(),  or  since  the  last successful read(2), then the buffer given to read(2) returns an
              unsigned 8-byte integer (uint64_t) containing the  number  of  expirations  that  have  occurred.   (The
              returned value is in host byte order—that is, the native byte order for integers on the host machine.)

If  no timer expirations have occurred at the time of the read(2), then the call either blocks until the
              next timer expiration, or fails with the error EAGAIN if the file descriptor has been  made  nonblocking
              (via the use of the fcntl(2) F_SETFL operation to set the O_NONBLOCK flag).

A read(2) will fail with the error EINVAL if the size of the supplied buffer is less than 8 bytes.

poll(2), select(2) (and similar)
              The file descriptor is readable (the select(2) readfds argument; the poll(2) POLLIN flag) if one or more
              timer expirations have occurred.

The file descriptor also supports the other file-descriptor multiplexing APIs: pselect(2), ppoll(2), and
              epoll(7).

close(2)
              When  the  file descriptor is no longer required it should be closed.  When all file descriptors associ‐
              ated with the same timer object have been closed, the timer is disarmed and its resources are  freed  by
              the kernel.

fork(2) semantics
       After  a  fork(2),  the  child  inherits  a  copy of the file descriptor created by timerfd_create().  The file
       descriptor refers to the same underlying timer object as the corresponding file descriptor in the  parent,  and
       read(2)s in the child will return information about expirations of the timer.

execve(2) semantics
       A  file  descriptor  created by timerfd_create() is preserved across execve(2), and continues to generate timer
       expirations if the timer was armed.

RETURN VALUE
       On success, timerfd_create() returns a new file descriptor.  On error, -1 is returned and errno is set to indi‐
       cate the error.

timerfd_settime() and timerfd_gettime() return 0 on success; on error they return -1, and set errno to indicate
       the error.

ERRORS
       timerfd_create() can fail with the following errors:

EINVAL The clockid argument is neither CLOCK_MONOTONIC nor CLOCK_REALTIME;

EINVAL flags is invalid; or, in Linux 2.6.26 or earlier, flags is nonzero.

EMFILE The per-process limit of open file descriptors has been reached.

ENFILE The system-wide limit on the total number of open files has been reached.

ENODEV Could not mount (internal) anonymous inode device.

ENOMEM There was insufficient kernel memory to create the timer.

timerfd_settime() and timerfd_gettime() can fail with the following errors:

EBADF  fd is not a valid file descriptor.

EFAULT new_value, old_value, or curr_value is not valid a pointer.

EINVAL fd is not a valid timerfd file descriptor.

timerfd_settime() can also fail with the following errors:

EINVAL new_value is not properly initialized (one of the tv_nsec falls outside the range zero to 999,999,999).

EINVAL flags is invalid.

VERSIONS
       These system calls are available on Linux since kernel 2.6.25.  Library support is provided by glibc since ver‐
       sion 2.8.

CONFORMING TO
       These system calls are Linux-specific.

BUGS
       Currently, timerfd_create() supports fewer types of clock IDs than timer_create(2).

EXAMPLE
       The following program creates a timer and then monitors its progress.  The program accepts up to three command-
       line arguments.  The first argument specifies the number of seconds for the initial expiration  of  the  timer.
       The  second argument specifies the interval for the timer, in seconds.  The third argument specifies the number
       of times the program should allow the timer to expire before terminating.  The second  and  third  command-line
       arguments are optional.

The following shell session demonstrates the use of the program:

$ a.out 3 1 100
           0.000: timer started
           3.000: read: 1; total=1
           4.000: read: 1; total=2
           ^Z                  # type control-Z to suspend the program
           [1]+  Stopped                 ./timerfd3_demo 3 1 100
           $ fg                # Resume execution after a few seconds
           a.out 3 1 100
           9.660: read: 5; total=7
           10.000: read: 1; total=8
           11.000: read: 1; total=9
           ^C                  # type control-C to suspend the program

Program source

 1 #include <sys/timerfd.h>
 2        #include <time.h>
 3        #include <unistd.h>
 4        #include <stdlib.h>
 5        #include <stdio.h>
 6        #include <stdint.h>        /* Definition of uint64_t */
 7
 8        #define handle_error(msg)  9                do { perror(msg); exit(EXIT_FAILURE); } while (0)
10
11        static void
12        print_elapsed_time(void)
13        {
14            static struct timespec start;
15            struct timespec curr;
16            static int first_call = 1;
17            int secs, nsecs;
18
19            if (first_call) {
20                first_call = 0;
21                if (clock_gettime(CLOCK_MONOTONIC, &start) == -1)
22                    handle_error("clock_gettime");
23            }
24
25            if (clock_gettime(CLOCK_MONOTONIC, &curr) == -1)
26                handle_error("clock_gettime");
27
28            secs = curr.tv_sec - start.tv_sec;
29            nsecs = curr.tv_nsec - start.tv_nsec;
30            if (nsecs < 0) {
31                secs--;
32                nsecs += 1000000000;
33            }
34            printf("%d.%03d: ", secs, (nsecs + 500000) / 1000000);
35        }
36
37        int
38        main(int argc, char *argv[])
39        {
40            struct itimerspec new_value;
41            int max_exp, fd;
42            struct timespec now;
43            uint64_t exp, tot_exp;
44            ssize_t s;
45
46            if ((argc != 2) && (argc != 4)) {
47                fprintf(stderr, "%s init-secs [interval-secs max-exp]\n",
48                        argv[0]);
49                exit(EXIT_FAILURE);
50            }
51
52            if (clock_gettime(CLOCK_REALTIME, &now) == -1)
53                handle_error("clock_gettime");
54
55            /* Create a CLOCK_REALTIME absolute timer with initial
56               expiration and interval as specified in command line */
57
58            new_value.it_value.tv_sec = now.tv_sec + atoi(argv[1]);
59            new_value.it_value.tv_nsec = now.tv_nsec;
60            if (argc == 2) {
61                new_value.it_interval.tv_sec = 0;
62                max_exp = 1;
63            } else {
64                new_value.it_interval.tv_sec = atoi(argv[2]);
65                max_exp = atoi(argv[3]);
66            }
67            new_value.it_interval.tv_nsec = 0;
68
69            fd = timerfd_create(CLOCK_REALTIME, 0);
70            if (fd == -1)
71                handle_error("timerfd_create");
72
73            if (timerfd_settime(fd, TFD_TIMER_ABSTIME, &new_value, NULL) == -1)
74                handle_error("timerfd_settime");
75
76            print_elapsed_time();
77            printf("timer started\n");
78
79            for (tot_exp = 0; tot_exp < max_exp;) {
80                s = read(fd, &exp, sizeof(uint64_t));
81                if (s != sizeof(uint64_t))
82                    handle_error("read");
83
84                tot_exp += exp;
85                print_elapsed_time();
86                printf("read: %llu; total=%llu\n",
87                        (unsigned long long) exp,
88                        (unsigned long long) tot_exp);
89            }
90
91            exit(EXIT_SUCCESS);
92        }

SEE ALSO
       eventfd(2),   poll(2),   read(2),  select(2),  setitimer(2),  signalfd(2),  timer_create(2),  timer_gettime(2),
       timer_settime(2), epoll(7), time(7)

COLOPHON
       This page is part of release 3.74 of the Linux man-pages project.  A description of  the  project,  information
       about    reporting    bugs,    and    the    latest    version    of    this    page,    can    be   found   at
       http://www.kernel.org/doc/man-pages/.

时间: 2024-09-30 12:00:01

Linux定时器 timerfd使用的相关文章

Linux定时器接口

Linux定时器接口主要分为三类: 一. sleep(), unsleep, alarm(),引用了SIGALARM信号,在多线程中使用信号又是相当麻烦的. 二. nanosleep(), clock_nanosleep(),让线程挂起,程序失去响应,多线程网络编程中应该避免. 三. timerfd_create(),也是用信号来deliver超时,将时间转变成一个文件描述符,可以像其他I/O事件一样操作定时器,所以程序中在写I/O框架用到定时器首选timerfd_create(). 1. ti

【转】Linux 定时器setitimer()

http://blog.sina.com.cn/s/blog_590be5290100izdf.html 用法: #include <sys/time.h> int getitimer(int which, struct itimerval *value); int setitimer(int which, const struct itimerval *value, struct itimerval *ovalue); 功能描述: 获取或设定间歇计时器的值.系统为进程提供三种类型的计时器,每

Linux 定时器

也许,一本书你从头到尾都看完了,但也只是看完了. 也许,你似懂非懂的理解了. 但,当你准备用学来的这些东西做东西时,才发现:原来你根本没懂! 看书重要的不是看了多少,重要的是理解了多少,理解的多深多广! 一个傅里叶变换,一个小波,我怎么越看越晕? "学以致用"这四个字越来越被教育所忽视了. 如果不是图像处理我真不知道线性代数原来可以这么牛逼! ......................................... #include <stdio.h> #incl

Linux使用定时器timerfd 和 eventfd接口实现进程线程通信

body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gray; border-width: 2px 0 2px 0;} th{border: 1px solid gray; padding: 4px; background-color: #DDD;} td{border: 1px solid gray; padding: 4px;} tr:nth-chil

Linux的timerfd

timerfd是Linux为用户程序提供的一个定时器接口.这个接口基于文件描述符,所以能够被用于select/poll的应用场景. 1.      使用方法 timerfd提供了如下接口供用户使用 timerfd_create int timerfd_create(int clockid, int flags); timerfd_create用于创建一个定时器文件. 参数clockid可以是CLOCK_MONOTONIC或者CLOCK_REALTIME. 参数flags可以是0或者O_CLOEX

Linux定时器 使用

1.alarm alarm()执行后,进程将继续执行,在后期(alarm以后)的执行过程中将会在seconds秒后收到信号SIGALRM并执行其处理函数. #include <stdio.h>#include <unistd.h>#include <signal.h>void sigalrm_fn(int sig){    printf("alarm!\n");    alarm(2);    return;}int main(void){    s

Smart210学习记录-----linux定时器

1.内核定时器: Linux 内核所提供的用于操作定时器的数据结构和函数如下: (1) timer_list 在 Linux 内核中,timer_list 结构体的一个实例对应一个定时器 1 struct timer_list { 2    struct list_head entry; /* 定时器列表 */ 3    unsigned long expires; /*定时器到期时间*/ 4    void (*function)(unsigned long); /* 定时器处理函数 */ 5

Linux定时器工具-crontab 各參数具体解释及怎样查看日志记录

要使用crontab定时器工具,必需要启动cron服务: service cron start crontab的语法,以备日后救急.先上张超给力的图: crontab各參数说明: -e : 运行文字编辑器来编辑crontab,内定的文字编辑器是VI -r : 删除眼下的crontab -l : 列出眼下的crontab(查看专用) -i : 会和-r 配合使用,在删除当前的crontab时询问,输入y 则删除 注意crontab是分用户的,以谁登录就会编辑到谁的crontab crontab特殊

linux定时器

我们常常有设置系统在某一时间执行相应动作的需求,比如设置电脑什么时候自动锁屏,什么时候自动关机,设置应用程序什么时候自动运行,什么时候自动退出.这些与时间相关的功能,都需要依靠操作系统中的定时器来实现. linux中定时器的使用原理很简单,你只需设置一个超时时间和相应的执行函数,系统就会在超时的时候执行一开始设置的函数.超时的概念有点模糊,它指的是你设定一个时间,如果当前的时间超过了你设定的时间,那就超时了.比如说,你设置五分钟后系统自动关机,系统会记住五分钟后的具体时间,也就是当前时间再加上五