HDU 4059 The Boss on Mars(数论)

题目大意:给你一个n(10^8)以内,让你求出1-n中与n互质的数x^4的和。

解题思路:先把n进行分解质因数,然后容斥求出所有与n不互质的数x^4的和,然后做减法用总的减去不互质的就是互质的。

注意:1^4+2^4+……+n^4 = n(n+1)(2n+1)(3n^2+3n-1)/30.

The Boss on Mars

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2035    Accepted Submission(s): 611

Problem Description

On Mars, there is a huge company called ACM (A huge Company on Mars), and it’s owned by a younger boss.

Due to no moons around Mars, the employees can only get the salaries per-year. There are n employees in ACM, and it’s time for them to get salaries from their boss. All employees are numbered from 1 to n. With the unknown reasons, if the employee’s work number
is k, he can get k^4 Mars dollars this year. So the employees working for the ACM are very rich.

Because the number of employees is so large that the boss of ACM must distribute too much money, he wants to fire the people whose work number is co-prime with n next year. Now the boss wants to know how much he will save after the dismissal.

Input

The first line contains an integer T indicating the number of test cases. (1 ≤ T ≤ 1000) Each test case, there is only one integer n, indicating the number of employees in ACM. (1 ≤ n ≤ 10^8)

Output

For each test case, output an integer indicating the money the boss can save. Because the answer is so large, please module the answer with 1,000,000,007.

Sample Input

2
4
5

Sample Output

82
354

Hint

Case1: sum=1+3*3*3*3=82
Case2: sum=1+2*2*2*2+3*3*3*3+4*4*4*4=354

Author

ZHANG, Chao

Source

2011 Asia Dalian Regional Contest

#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <iomanip>
#include <stdio.h>
#include <string>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define eps 1e-8
#define M 1000100
#define LL long long
//#define LL long long
#define INF 0x3f3f3f
#define PI 3.1415926535898
#define mod 1000000007

const int maxn = 110;

using namespace std;
///bool f[maxn];

int num[maxn];
int ans;
void Find(LL n)
{
    ans = 0;
    for(int i = 2; i*i <= n; i++)
    {
        if(n%i==0)
        {
            num[ans++] = i;
            while(n%i == 0) n /= i;
        }
    }
    if(n > 1) num[ans++] = n;
}

LL fastmod(LL a, LL k)
{
    LL b = 1LL;
    while(k)
    {
        if(k&1) b = a*b%mod;
        a = (a%mod)*(a%mod)%mod;
        k /= 2;
    }
    return b;
}

LL Pow(LL n, int k)
{
    LL ff = 1LL;
    for(int i = 0; i < k; i++)
    {
        ff *= n;
        if(ff > mod) ff %= mod;
    }
    return ff%mod;
}

LL Get(LL n)
{
    LL sum = n*(n+1)%mod;
    sum %= mod;
    sum *= (2*n+1)%mod;
    sum %= mod;
    sum *= ((3*(n*n%mod))%mod+((3*n)%mod)-1)%mod;
    sum %= mod;
    LL sp = fastmod(30, mod-2);
    sum *= sp;
    sum %= mod;
    return sum;
}

int main()
{
    int T;
    cin >>T;
    while(T--)
    {
        LL n;
        scanf("%I64d",&n);
        Find(n);
        LL sum = 0;
        LL xsum;
        LL xans = Get(n);
        for(int i = 1; i < (1<<ans); i++)
        {
            LL sx = 1;
            int s = 0;
            for(int j = 0; j < ans; j++)
            {
                if(i&(1<<j))
                {
                    sx *= num[j];
                    s ++;
                }
            }
            if(s%2)
            {
                xsum = Pow(sx, 4);
                xsum %= mod;
                sum += (xsum*Get(n/sx))%mod;
                sum %= mod;
            }
            else
            {
                xsum = Pow(sx, 4);
                xsum %= mod;
                sum -= (xsum*Get(n/sx))%mod;
                sum %= mod;
                while(sum < 0) sum += mod;
            }
        }
        if(n == 1)
        {
            cout<<0<<endl;
            continue;
        }
        xans -= sum;
        while(xans < 0) xans += mod;
        printf("%I64d\n",xans%mod);
    }
}
时间: 2024-10-03 06:42:42

HDU 4059 The Boss on Mars(数论)的相关文章

数论 + 容斥 - HDU 4059 The Boss on Mars

The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若自己手动推公式的话,还是需要一定的数学基础. 总的思路:先求出sum1=(1^4)+(2^4)+...(n^4),再求出sum2=(1~n中与n不互质的数的四次方的和),answer=sum1-sum2. 如何求sum1呢? 有两种方法: 1.数列差分.由于A={Sn}={a1^4+a2^4+...an^4}

hdu 4059 The Boss on Mars

The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1934    Accepted Submission(s): 580 Problem Description On Mars, there is a huge company called ACM (A huge Company on Mars), an

hdu 4059 The Boss on Mars(容斥)

http://acm.hdu.edu.cn/showproblem.php?pid=4059 定义S = 1^4 + 2^4 + 3^4+.....+n^4,现在减去与n互质的数的4次方,问共减少了多少. 容斥原理,可以先把与n不互质的数的4次方求出来.那就先对n进行质因子分解,对质因子的组合运用容斥原理,质因子个数为奇数就加,偶数就减.其实与求[1,n]内与n互质的数的个数类似,该题重点是计算,防止乘法溢出. 对于求解1^4 + 2^4 + 3^4+.....+n^4,可以先类比1^2+2^2

hdu 4059 The Boss on Mars(纳入和排除)

http://acm.hdu.edu.cn/showproblem.php?pid=4059 定义S = 1^4 + 2^4 + 3^4+.....+n^4.如今减去与n互质的数的4次方.问共降低了多少. 容斥原理.能够先把与n不互质的数的4次方求出来.那就先对n进行质因子分解,对质因子的组合运用容斥原理.质因子个数为奇数就加,偶数就减.事实上与求[1,n]内与n互质的数的个数类似,该题重点是计算,防止乘法溢出. 对于求解1^4 + 2^4 + 3^4+.....+n^4,能够先类比1^2+2^

HDU 4059 The Boss on Mars ( 容斥原理)

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4059 题意: 给定一个数n求小于n的与n互斥的数的四次方的和. 分析: 我们可以求出从1~n的所有数的四次方的和sum1,然后容斥求出1~n所有与n不互斥的数的四次方的和sum2: ans =sum1 - sum2; 设f(n)表示从1~n的所有数的四次方的和 f(n)=1/30*n*(n+1)(2n+1)(3n^2+3n-1); 推倒如下: (n+1)^5-n^5=5n^4+10n^3+10n^

HDU 4059 The Boss on Mars-矩阵+容斥

错了29遍,终成正果..... 根据题意,很容易的可以想到容斥. 然后的问题就是如何求 sum(n)=1^4+2^4+3^4+....+n^4; 有三种道路: 很显然:1^4+2^4+3^4+....+n^4=(n^5)/5+(n^4)/2+(n^3)/3-n/30: 则1,用java的大数去敲这个的代码. 2,用c++敲,但是用到分数取模,求逆元. 3,用c++敲,但是不用这个公式,用矩阵去构造sum(n). 我用的是第三种.但是第三种有的缺陷,就是时间复杂度有点高. 接下来的问题就是如何优化

The Boss on Mars

The Boss on Mars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2327    Accepted Submission(s): 718 Problem Description On Mars, there is a huge company called ACM (A huge Company on Mars), and

HDU 4002 Find the maximum(数论-欧拉函数)

Find the maximum Problem Description Euler's Totient function, φ (n) [sometimes called the phi function], is used to determine the number of numbers less than n which are relatively prime to n . For example, as 1, 2, 4, 5, 7, and 8, are all less than

HDU 1800 Flying to the Mars (水题)

Flying to the Mars Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 11099    Accepted Submission(s): 3572 Problem Description In the year 8888, the Earth is ruled by the PPF Empire . As the popul