Go语言学习(四)经常使用类型介绍

1.布尔类型

var v1 bool
v1 = true;
v2 := (1==2) // v2也会被推导为bool类型

2.整型

类 型  长度(字节)     值 范 围
int8    1  ?            128 ~ 127
uint8(即byte)1       0 ~ 255
int16   2  ?            32 768 ~ 32 767
uint16  2               0 ~ 65 535
int32   4  ?            2 147 483 648 ~ 2 147 483 647
uint32  4               0 ~ 4 294 967 295
int64   8  ?    9 223 372 036 854 775 808 ~ 9 223 372 036 854 775 807
uint64  8       0 ~ 18 446 744 073 709 551 615
int     平台相关        平台相关
uint    平台相关        平台相关
uintptr 同指针         在32位平台下为4字节,64位平台下为8字节
var value2 int32
value1 := 64 // value1将会被自己主动推导为int类型
value2 =value1  //编译失败:cannot use value1 (type int) as type int32 in assignment。

//使用强制类型转换可解决
value2 = int32(value1)

3.数值运算

常规运算:+、-、*、/和%
比較运算: > 、 < 、 == 、 >= 、 <= 和 !=
须要注意:两个不同类型的整型数不能直接比較,比方 int8 类型的数和 int类型的数不能直接比較,但各种
类型的整型变量都能够直接与字面常量(literal)进行比較,比方:
var i int32
var j int64
i, j = 1, 2
if i == j { // 编译错误
fmt.Println("i and j are equal.")
}
if i == 1 || j == 2 { // 编译通过
fmt.Println("i and j are equal.")
}

4.位运算

x << y  左移
x >> y  右移
x ^ y   异或
x & y   与
x | y   或
^x      取反

5.浮点类型

Go语言定义了两个类型 float32 和 float64 ,当中 float32 等价于C语言的 float 类型,
float64 等价于C语言的 double 类型。

var fvalue1 float32
fvalue1 = 12
fvalue2 := 12.0 // 假设不加小数点,fvalue2会被推导为整型而不是浮点型

对于以上样例中类型被自己主动推导的 fvalue2 。须要注意的是其类型将被自己主动设为 float64 ,
而无论赋给它的数字是否是用32位长度表示的。因此,对于以上的样例。以下的赋值将导致编译
错误:
fvalue1 = fvalue2
而必须使用这种强制类型转换:
fvalue1 = float32(fvalue2)

5.1浮点数比較

由于浮点数不是一种精确的表达方式,所以像整型那样直接用 == 来推断两个浮点数是否相等
是不可行的。这可能会导致不稳定的结果。
以下是一种推荐的替代方案:
import "math"
// p为用户自己定义的比較精度,比方0.00001
func IsEqual(f1, f2, p float64) bool {
    return math.Fdim(f1, f2) < p
}

6.复数

复数实际上由两个实数(在计算机中用浮点数表示)构成,一个表示实部(real),一个表示
虚部(imag)。假设了解了数学上的复数是怎么回事,那么Go语言的复数就很easy理解了。

6.1复数表示

var value1 complex64 // 由2个float32构成的复数类型
value1 = 3.2 + 12i
value2 := 3.2 + 12i // value2是complex128类型
value3 := complex(3.2, 12) // value3结果同 value2

6.2 实部与虚部

对于一个复数 z = complex(x, y) ,就能够通过Go语言内置函数 real(z) 获得该复数的实
部,也就是 x ,通过 imag(z) 获得该复数的虚部,也就是 y 。

7.字符串

Go语言中字符串的声明和初始化很简单。举比例如以下:
var str string  // 声明一个字符串变量
str = "Hello world" // 字符串赋值
ch := str[0] // 取字符串的第一个字符
fmt.Printf("The length of \"%s\" is %d \n", str, len(str))
fmt.Printf("The first character of \"%s\" is %c.\n", str, ch)
输出结果为:
The length of "Hello world" is 11
The first character of "Hello world" is H.

字符串的内容能够用相似于数组下标的方式获取,但与数组不同,字符串的内容不能在初始
化后被改动,比方以下的样例:
str := "Hello world" // 字符串也支持声明时进行初始化的做法
str[0] = ‘X‘  // 编译错误
编译器会报相似例如以下的错误:
cannot assign to str[0]
假设想改动字符串的内容,能够通过例如以下的方式改动:
s := "hello"
c := []rune(s) //将字符串s转成rune数组
c[0] = ‘x‘ //改动rune数组中的第一个元素为x
s2 := string(c) //根据rune数组创建一个新的字符串
fmt.Println("s2=",s2)
执行结果:
    s2= xello

7.1字符串操作

x + y   字符串连接  "Hello" + "123" // 结果为Hello123
len(s)  字符串长度  len("Hello") // 结果为5
s[i]    取字符  "Hello" [1] // 结果为‘e‘

7.2多行字符串

使用多行字符串须要小心,比如:
s := "Hello "
    +"world"

编译时会被自己主动转换成:
s := "Hello ";
    +"world";
此时会编译失败,报错:invalid operation: + untyped string  

正确的多行写法是这种:
s := "Hello " +
    "world"
Go 就不会在错误的地方插入分号。

还有一种写法是使用反引號 ` 作为原始字符串符号:
s := `Hello
     world`

7.3字符串遍历

Go语言支持两种方式遍历字符串。

一种是以字节数组的方式遍历:
str := "abc中国"
n := len(str)
for i := 0; i < n; i++ {
    ch := str[i] // 根据下标取字符串中的字符,类型为byte
    fmt.Printf("i=%v\n", ch)
}
输出结果:
i=97    //a
i=98    //b
i=99    //c
i=228   //中字的第一字节,每一个中文字符在UTF-8中占3个字节
i=184   //中字的第二个字节
i=173   //中字的第三个字节
i=229   //国字的第一个字节
i=155   //国字的第二个字节
i=189   //国字的第三个字节

还有一种是以Unicode字符遍历,以Unicode字符方式遍历时,每一个字符的类型是 rune
(早期的Go语言用 int 类型表示Unicode字符),而不是byte.
str := "abc中国"
for i, ch := range str{  //range关键字在数组中有介绍
    fmt.Println(i,ch)  //ch的类型为rune
}
//输出结果:
0 97
1 98
2 99
3 20013
6 22269

8.字符类型

在Go语言中支持两个字符类型,一个是 byte (实际上是 uint8 的别名),代表UTF-8字符串的单个字节的值;
还有一个是 rune 。代表单个Unicode字符。出于简化语言的考虑,Go语言的多数API都假设字符串为UTF-8编码。
虽然Unicode字符在标准库中有支持。但实际上较少使用。

9.数组

以下为一些常规的数组声明方法:
[32]byte // 长度为32的数组,每一个元素为一个字节
[2*N] struct { x, y int32 } // 复杂类型数组
[1000]*float64  // 指针数组
[3][5]int  // 二维数组
[2][2][2]float64  // 等同于[2]([2]([2]float64))

在Go语言中。数组长度在定义后就不可更改,在声明时长度能够为一个常量或
者一个常量表达式(常量表达式是指在编译期就可以计算结果的表达式)。

9.1元素的訪问

能够使用数组下标来訪问数组中的元素。与C语言同样,数组下标从0到len(array)-1,
以下的演示样例遍历整型数组并逐个打印元素内容:
//通过for循环遍历
for i := 0; i < len(array); i++ {
    fmt.Println("Element", i, "of array is", array[i])
}
//Go语言还提供了一个关键字range,用于便捷地遍历容器中的元素。
//当然,数组也是range的支持范围。上面的遍历过程能够简化为例如以下的写法:
for k, v := range array {  //k相当于索引,v相当于值
    fmt.Println("Array element[", k, "]=", v)
}

9.2值操作

须要特别注意的是。在Go语言中数组是一个值类型(value type)。

全部的值类型变量在赋值
和作为參数传递时都将产生一次复制动作。

假设将数组作为函数的參数类型,则在函数调用时该
參数将发生数据复制。

因此,在函数体中无法改动传入的数组的内容,由于函数内操作的仅仅是所
传入数组的一个副本。以下用样例来说明这一特点:
func main(){
    array := [5]int{1,2,3,4,5}
    modify(array)
    fmt.Println("In main(),array values:",array)
}

func modify(array [5] int){
    array[0] = 10
    fmt.Println("In modify(),array values:",array)
}
//输出结果:
In modify(), array values: [10 2 3 4 5]
In main(), array values: [1 2 3 4 5]

从执行结果能够看出,函数 modify() 内操作的那个数组跟 main() 中传入的数组是两个不同的实
例。那么。怎样才干在函数内操作外部的数据结构呢?这个就要用到后接下来要讲的数组切片.

10.数组切片

在前一节里我们已经提过数组的特点:数组的长度在定义之后无法再次改动;数组是值类型。
每次传递都将产生一份副本。显然这种数据结构无法全然满足开发人员的真实需求。

Go语言提供了数组切片(slice)这个很酷的功能来弥补数组的不足,能够随时动态扩充存放空
间,而且能够被任意传递而不会导致所管理的元素被反复复制。有点相似于java中的集合.

数组切片的数据结构能够抽象为以下3个变量:
一个指向原生数组的指针;
数组切片中的元素个数;
数组切片已分配的存储空间。

10.1创建数组切片

(1)基于已存在数组创建,数组切片能够仅仅使用数组的一部分元素或者整个数组来创建。
甚至能够创建一个比所基于的数组还要大的数组切片。

var myArray [10]int = [10]int{1,2,3,4,5,6,7,8,9,10}
// 基于数组前5个元素创建一个数组切片
var mySlice []int = myArray[:5]

fmt.Println("Elements of myArray:")
for _, v := range myArray{
    fmt.Print(v," ")
}

fmt.Println("\nElements of mySlice:")
for _, v:= range mySlice{
    fmt.Print(v," ")
}
//输出结果:
Elements of myArray:
1 2 3 4 5 6 7 8 9 10
Elements of mySlice:
1 2 3 4 5

Go语言支持用 myArray[first:last] 这种方式来基于数组生成一
个数组切片,而且这个使用方法还很灵活,比方以下几种都是合法的。
a.基于 myArray 的全部元素创建数组切片:
mySlice = myArray[:]

b.基于 myArray 的前5个元素创建数组切片:
mySlice = myArray[:5]

c.基于从第5个元素開始的全部元素创建数组切片:
mySlice = myArray[5:]

(2)通过make()函数直接创建数组切片
创建一个初始元素个数为5的数组切片,元素初始值为0:
mySlice1 := make([]int,5)

创建一个初始元素个数为5的数组切片,元素初始值为0,并预留10个元素的存储空间:
mySlice2 := make([]int,5,10) 

通过cap()函数能够获取切片的分配空间,len()函数能够知道当前已存储的元素个数.
fmt.Println("len(mySlice2):", len(mySlice2))
fmt.Println("cap(mySlice2):", cap(mySlice2))
//输出结果:
len(mySlice2): 5
cap(mySlice2): 10

当然,其实还会有一个匿名数组被创建出来。仅仅是不须要我们来担心而已。

(3)直接在声明的时候并初始化
mySlice3 := []int{8,9,10}

(4)基于数组切片创建数组切片
oldSlice := []int{1,2,3,4,5}
newSlice := oldSlice[:3] //基于oldSlice的前3个元素创建

10.2数组切片的元素遍历

操作数组的全部方法都适合数组切片,通过上面的代码也能够看得出来共同拥有2种方式:
for循环遍历,或者for循环结合range来操作

10.3数组切片元素的动态增减

与数组相比,数组切片多了一个存储能力的概念,即元素个数和分配的空间能够是两个不同的值,
合理地设置存储能力的值,能够大幅减少数组切片内部又一次分配内存和搬送内存块的频率,
从而大大提高程序性能。

通过append()函数能够在切片后面追加元素,比如:
mySlice = append(mySlice, 8, 9, 10) 

append()函数的第二个參数是个不定的參数,有点相似java中的可变參数,甚至能够追加1个数组切片
mySlice2 := []int{8,9,10}
mySlice = append(mySlice,mySlice2...) //注意:这3个...点不能省略,否则编译失败

10.4内容复制

通过copy()函数,能够将一个数组切片拷贝到还有一个数组切片中,
假设2个的数组切片不一样大,则会按当中较小的那个数组切片的元素个数进行复制.
slice1 := []int{1,2,3,4,5}
slice2 := []int{5,4,3}
copy(slice2,slice1) //仅仅会复制slice1的前3个元素到slice2中,slice2中的值被自己主动替换
copy(slice1,slice2) //仅仅会复制slice2的3个元素到slice1的前3个位置,该3个位置的值自己主动替换,其它的不变

11.map

在C++/Java中。map一般都以库(导包)的方式提供,在C++/Java中,
而在Go中,使用map 不须要引入不论什么库。而且用起来也更加方便。看以下的样例:
type PersonInfo struct{
    ID string
    Name string
    Address string
}

func main(){
    var personDB map[string] PersonInfo //声明一个key=string,value=PersonInfo的map
    personDB = make(map[string] PersonInfo) //通过make初始化

    //往这个map里插入几条数据
    personDB["0"] = PersonInfo{"12345","Tom","Room 203,..."}
    personDB["1"] = PersonInfo{"1","Jack","Room 101,..."}
    //....
    //从这个map查找键为12345的信息
    person, ok := personDB["0"] //假设查找到,则ok=true,否则=false
    if ok{
        fmt.Println("Found person",person.Name,"with ID",person.ID)
    }else{
        fmt.Println("Did not find person")
    }
}
//执行结果:
Found person Tom with ID 12345


11.1map的声明

上面的样例假设看不懂的话没关系,以下就介绍下map的使用
map的声明基本上没有多余的元素,形如:
var 变量名 map[key的类型] value的类型

11.2map的创建

(1)通过make()函数创建
var myMap map[int] string
myMap = make(map[int]string) //也能够简写成一条语句: myMap := make(map[int]string)
myMap[0] = "1" //赋值
myMap[1] = "2"
result,_ := myMap[0] //这里用到了匿名变量
fmt.Println("myMap[0]=",result)
fmt.Println("myMap[1]=",myMap[1])
//执行结果:
myMap[0]= 1
myMap[1]= 2

通过make创建的时候,还能够指定其初始容量
myMap2 := make(map[int]string,100)

(2)方式2,通过{}赋值的方式创建
myMap3 := map[int]string{
    0:"张三",
    1:"李四",
}
fmt.Println("myMap3[0]=",myMap3[0])
fmt.Println("myMap3[1]=",myMap3[1])
//执行结果:
myMap3[0]= 张三
myMap3[1]= 李四


11.3元素的删除

通过delete()函数完毕,形如:
delete(map变量名,map的key)
假设要删除的元素没有相应的key,则什么都不发生,可是假设传入的map变量的值是 nil 。
该调用将导致程序抛出异常(panic)。

11.4元素的查找

map通过key查找,能够返回2个变量,第一个为相应key的值,第二个为是否查找成功的bool,形如:
value,ok := map[key]
if ok{
    //找到了,处理value
}else{
    //未找到
}
当然,假设你很确定该key一定能够找到相应的值的话,那就能够直接使用一个变量来接收,比如:
value := map[key]
或者,第二个參数用匿名參数来接收,比如:
value,_ := map[key]

11.5元素的遍历

(1)使用for循环遍历
myMap := make(map[int]int)
myMap[0] = 100
myMap[1] = 101
myMap[2] = 102
for i:=0;i<len(myMap);i++ {
    fmt.Println("key=",i," value=",myMap[i])
}
执行结果:
key= 0  value= 100
key= 1  value= 101
key= 2  value= 102

(2)使用for循环结合range关键字遍历
myMap := map[int]int{
    0 : 10,
    1 : 20,
    2 : 30,
}
for k,v := range myMap{
    fmt.Println("key=",k," value=",v)
}
执行结果:
key= 0  value= 10
key= 1  value= 20
key= 2  value= 30
时间: 2024-10-15 22:16:07

Go语言学习(四)经常使用类型介绍的相关文章

Swift语言指南(四)--类型安全和类型推断

Swift是一门类型安全语言,类型安全语言需要代码里值的类型非常明确.如果你的代码中有部分值需要String类型,你就不能错误地传递Int. 鉴于Swift的类型安全,编译代码时,Swift会执行类型检查并将任何类型不匹配的地方标记为错误,使你在开发当中尽可能早的捕获并修正错误. 类型检查有助于你在操作不同值的类型时避免犯错.但这并不意味着你必须在声明每一个常量或变量时去检查类型,如果你不检查所需值的类型,Swift会执行类型推断来计算出相应地类型. 类型推断让编译器在编译代码时,根据你提供的值

Go语言学习(四)常用类型介绍

1.布尔类型 var v1 bool v1 = true; v2 := (1==2) // v2也会被推导为bool类型 2.整型 类 型 长度(字节) 值 范 围 int8 1 ? 128 ~ 127 uint8(即byte)1 0 ~ 255 int16 2 ? 32 768 ~ 32 767 uint16 2 0 ~ 65 535 int32 4 ? 2 147 483 648 ~ 2 147 483 647 uint32 4 0 ~ 4 294 967 295 int64 8 ? 9 2

go语言学习四 - 复合类型字面量声明

package main import ( "encoding/json" "fmt" ) func main() { //go语言的复合大括号文面量声明非常强大和灵活 //只要在最外层声明完整的复合类型在大括号内部就不需要再声明类型而直接用大括号了 a := [][]int{ {1, 2, 3, 4}, //这里不必再用 []int{1,2,3,4} 声明,如果用的话编译器提示冗余的类型声明(Redundant type declaration) {5, 6, 7

智能合约语言 Solidity 教程系列1 - 类型介绍

现在的Solidity中文文档,要么翻译的太烂,要么太旧,决定重新翻译下.尤其点名批评极客学院名为<Solidity官方文档中文版>的翻译,机器翻译的都比它好,大家还是别看了. 写在前面 Solidity是以太坊智能合约编程语言,阅读本文前,你应该对以太坊.智能合约有所了解,如果你还不了解,建议你先看以太坊是什么Solidity教程会是一系列文章,本文是第一篇:介绍Solidity的变量类型.Solidity 系列完整的文章列表请查看分类-Solidity. 本文前半部分是参考Solidity

Go语言学习笔记(4)复合类型

  Go语言的复合类型,包括数组.切片和映射等. 值.指针和引用类型 通常情况下Go语言中的变量持有相应的值.也就是说,我们可以将一个变量想象成它所持有的值来使用.其中有些例外,通道.函数.方法.映射.切片是 引用变量,它们持有的都是引用,也即保存指针的变量.值在传递给函数或者方法的时候会被复制一次,对于布尔类型和数值类型来说这非常廉价,但是对于大型变 量代价却非常大.而且复制传参的方式,修改值只是修改了副本,这能保证原始变量不被修改,但也一定程度上增加了修改原始值的麻烦.幸好在Go语言中有指

C语言学习总结(三) 复杂类型

第五章.复杂数据类型 (数组.字符串.指针.结构体.枚举.共同体) 1.什么是数组? 概念:把具有相同类型的若干变量按有序的形式组织起来,这些按序排列的同类数据元素的集合称为数组: 按数组元素的类型不同,数组又可分为: 数值数组:用来存储数值得 字符数组:用来存储字符 ‘a’ 指针数组:用来存放指针(地址)的 结构数组:用来存放一个结构体类型的数据 按维度分类: 一维数组 二维数组 多维数组 1.一维数组 概念:所有的元素都不是数组 使用流程:定义数组---->给数组初始化---->使用数组

Dart语言学习( 五) Dart Bool类型

Dart Bool类型和其他语言类似,比较简单 其特点有: 1.使用 bool 表示布尔类型 2.布尔值只有 true 和 false 3.布尔类型bool默认值是null bool isTrue = true; bool isFalse = false; bool defaultBool ; print(isTrue); print(isFalse); print(defaultBool); print("Hello".isEmpty); 输出如下: true false null

初步swift语言学习笔记2(可选类型?和隐式可选类型!)

作者:fengsh998 原文地址:http://blog.csdn.net/fengsh998/article/details/28904115 转载请注明出处 假设认为文章对你有所帮助.请通过留言或关注微信公众帐号fengsh998来支持我,谢谢. 可选类型.隐式可选类型 在swift中.可选类型其根源是一个枚举型.里面有None和Some两种类型.事实上所谓的nil就是Optional.None, 非nil就是Optional.Some, 然后会通过Some(T)包装(wrap)原始值,这

OC语言学习 (四) SEL对象,用于日志输出的宏

SEL 对象即一个selector对象,保存一个方法的地址. Person.h #ifndef oc_Person_h #define oc_Person_h @interface Person : NSObject { int age; @protected float height; } @property int age; //编译器自动解释成 int age的get/set方法 - (void) say; - (void) testSEL; @end #endif Person.m #i