Oulipo
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 23667 | Accepted: 9492 |
Description
The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter ‘e‘. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive‘T‘s is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
- One line with the word W, a string over {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
- One line with the text T, a string over {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘}, with |W| ≤ |T| ≤ 1,000,000.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3 BAPC BAPC AZA AZAZAZA VERDI AVERDXIVYERDIAN
Sample Output
1 3 0
Source
题解: 统计W串在T串中出现的次数。根据数据规模,KMP算法可AC。
代码:
1 #include<stdio.h> 2 #include<string.h> 3 #include<math.h> 4 #include<ctype.h> 5 #include<stdlib.h> 6 #include<stdbool.h> 7 8 #define rep(i,a,b) for(i=(a);i<=(b);i++) 9 #define clr(x,y) memset(x,y,sizeof(x)) 10 #define sqr(x) (x*x) 11 #define LL long long 12 13 int i,j,n,num, 14 f[1000003]; 15 16 char p[10003],t[1000003]; 17 18 int init() 19 { 20 clr(p,‘\0‘); 21 clr(t,‘\0‘); 22 clr(f,0); 23 num=0; 24 25 scanf("%s",p); 26 scanf("%s",t); 27 28 return 0; 29 } 30 31 void kmp(char *t, char *p, int *f) 32 { 33 int n,m,j; 34 n = strlen(t); m = strlen(p); 35 getFail(p,f); 36 37 j = 0; 38 39 for(i = 0;i < n;i++) { 40 while(j && p[j] != t[i]) j=f[j]; 41 if(p[j] == t[i]) j++; 42 if(j == m) num++; 43 } 44 45 46 } 47 48 void getFail(char p[],int f[]) 49 { 50 int m,j,i; 51 m = strlen(p); 52 f[0] = 0;f[1] = 0; 53 54 for(i = 1;i < m;i++) { 55 j = f[i]; 56 while(j && p[i] != p[j]) j = f[j]; 57 f[i+1]=p[i]==p[j] ? j+1 : 0; 58 } 59 } 60 61 int main() 62 { 63 int T; 64 scanf("%d",&T); 65 66 while(T--) { 67 init(); 68 getFail(p,f); 69 kmp(t,p,f); 70 printf("%d\n",num); 71 } 72 return 0; 73 }
[POJ] 3461 Oulipo [KMP算法]