几个有关FPGA的概念

《数字设计——原理和实践》(John F.Wakerly)的书

FPGA同步时钟设计

  简单说就是 一个系统中(或系统中的一部分)都采用同一个时钟触发。系统中的(D)触发器全部都连接到一个时钟,而且只控制触发器的同步端(输入,同步置位,同步复 位)。这样的系统是相对于异步系统而言的,异步系统并不是不同的触发器时钟端连接到不同的时钟信号的系统(一般的这样叫做跨时钟系统,是相对几个较小的同 步系统的组合),而是更本没有了时钟的概念,依靠和触发器构造一样的反馈电路组成。相对于异步系统,同步系统更好设计(异步设计则象一个魔术,类似于汇编 和高级语言的关系),更容易进行时序分析(为什么要用D触发器而不用D锁存器)——在这里组合逻辑的竞争冒险毛刺问题都不存在了。应该说,同步系统最大的 问题在于时钟的偏斜(skew)。同步时钟系统也存在一些涉及的技巧,这些技巧一般围绕着降低关键路径的延时和时间和空间的平衡。这些都是平衡的艺术(了 解了基本的部件之后,剩下的工作就是一个字"平衡",这里边的方法就太具体,而且本人也知道得不多,不敢乱说了。不过,只要你用过一种方法,就可以体会到 其中的精神了。

FPGA亚稳态 

  这是跨时钟设计中最基础的一个问题(宏观的问 题是FIFO),按照我的观察,上论坛问问题多的一般不明白这个,请一定要注意了。 什么是亚稳态?数字电路中的简单双稳态电路就是两个反相器首尾相连组成(加一些控制逻辑变成了锁存器,触发器),然而并不像名字显示的,这种电路其实还有 第三种半稳定态——就是当两个反相器都处于中间值得情况——这称之为亚稳态。我们知道反相器在非逻辑值范围的反馈系数是相当大的,一旦因为干扰或者噪音离 开了这个中心点,就会很快地进入逻辑值范围(稳态)。数学分析,从亚稳态进入稳态,正如放射元素的衰变,是一个指数的规律(为什么是指数的规律?你要是想 不明白,说明你还没有搞明白亚稳态)。那么,亚稳态的危害到底是什么呢?消耗功率;),其实不是(虽然亚稳态消耗很大的功率),亚稳态的问题在于其电平并 不处于有效逻辑电平范围内,而且在变化。这就导致与其相连其他数字部件将其作出不同的判断(注意,不同),有的作为‘1‘,有的作为‘0‘,有的也进入了 亚稳态,数字部件就会逻辑混乱。那么究竟如何避免(或者减小)亚稳态的危险呢?注意到亚稳态的触发器继续停留在亚稳态的几率按照指数减少,那么办法就是等 ——等足够长的时间,直到这个几率变得小的实际上不会发生。到底需要有多长呢?有的厂商有一个数据,有的没有,按照普通的做法,至少等一个时钟周期——这 也就是所谓的异步数据要用两个触发器打一下。这一段有点糊涂,不容易说明白,你看了要是觉得云里雾里,不知所云,那们你只有找一本书学习了;要是觉得作者 表达不清,那么恭喜你,面试通过了的几率增加了。关于这个问题有很多糊涂的认识,要是你的主考官和你争论,你就顺着他的意思,毕竟没有人想找一个管教不了 的手下。

FPGA异步FIFO

  异步FIFO是跨时钟域设计方法的集中体现, 体现了很多的方法。不过,其中最重要的有两点,一个就是亚稳态,一个就是和亚稳态类似但不相同的——多个控制/状态信号的跨时钟传递。具体地说,就是当你 把一组信号传递到另外一个时钟域的话,这一组信号可能因为延迟不同,这样到达新时钟域之后,得到的数据相差一个老时钟域的时钟周期。兴好,对于FIFO, 需要传递的是一个计数器,这个计数器可以编码成格雷码(gray code),这样的编码每次只变化一个位,正好解决了上面的问题(要是没有画过图,最好画一个图看一下)。真不清楚这是怎么发明的!注意,这里其实还对格 雷码的相对延迟和相关的时钟周期有一个要求。这就是异步FIFO中最关键的一点,至于指针如何控制,稍微考虑一下都很容易清楚。需要注意的事,这些东西不 是用嘴能说清楚的,最好画一个示意图,不要因为没有说清楚,让主考官觉得你没有清楚。

  当然,除此之外还有很多很多的东西。比如组合逻辑的设计技巧,俺就没有研究。比如高速布线信号完整性问题,俺也不敢多说。至于整个系统的设计思想,更不敢妄语。不过如果只要你有一个问题了解到了相当的深度,相信你很容易搞清楚其他问题。

补充:
另一位高人给我解释的亚稳态,更加通俗易懂: 亚稳态就是对于触发器来说,输入信号与时钟之间不满足建立保持时间,导致输出处于‘0‘和‘1‘之间的一个电平上,这个状态就是亚稳态。然而亚稳态不能持久,由于电路的噪声,它最后会稳定在‘0‘或 ‘1‘,导致了不可预测的输出。出现亚稳态的原因是输入和时钟不同步,简单的解决方法是将输入用两个D触发器打成同步。

时间: 2024-08-07 20:59:45

几个有关FPGA的概念的相关文章

FPGA静态时序分析——IO口时序(Input Delay /output Delay)(转载)

转载地址:http://www.cnblogs.com/linjie-swust/archive/2012/03/01/FPGA.html 1.1  概述 在高速系统中FPGA时序约束不止包括内部时钟约束,还应包括完整的IO时序约束和时序例外约束才能实现PCB板级的时序收敛.因此,FPGA时序约束中IO口时序约束也是一个重点.只有约束正确才能在高速情况下保证FPGA和外部器件通信正确. 1.2  FPGA整体概念 由于IO口时序约束分析是针对于电路板整个系统进行时序分析,所以FPGA需要作为一个

FPGA开发全攻略——FPGA发展以及赛灵思系列产品

原文链接: FPGA开发全攻略连载之八:从可编程器件发展看FPGA未来趋势 FPGA开发全攻略连载之九:FPGA主要供应商与产品(1) FPGA开发全攻略连载之九:FPGA主要供应商与产品(2) FPGA开发全攻略连载之九:FPGA主要供应商与产品(3) 可编程逻辑器件的发展历史可编程逻辑器件的发展可以划分为4个阶段,即从20世纪70年代初到70年代中为第1段,20世纪70年代中到80年代中为第2阶段,20世纪80年代到90年代末为第3阶段,20世纪90年代末到目前为第4阶段. 第1阶段的可编程

Dave SDK help-content-------Resource Group

 ResourceGroup 从单片机软件的角度,寄存器的位字段是最小的功能单元.HW resource group是一系列能被URI(统一资源标识符)识别的位字段的集合.此外,这个寄存器位字段的实现的功能和组成的硬件功能块,E.g. CCU8中的一片CC8单元包含多个寄存器位字段,它相应的URI是"peripheral/ccu8/*/cc8/*","*"表示"any"单元或者slice.这一命名方法非常有用,它可以包含所有的硬件单元(与FP

【转载】回首大学四年,一个电工对大学课程的见解

今天在一个公众号里面看到这个文章.读来真是 感触很多.感谢这位电工对自己的总结,而且写了出来,让更多的人看到.文中提到了很多我们控制专业的书,当然也是很多电子工程专业的人都需要学习的,这些现在感觉没有什么用的书,原来在以后的工作总竟然那么的有用.而且我们现在不知道自己所学的这些课程之间到底有什么联系,学了那么多,还是不知道这些课程到底该怎么配合着应用到实际中.这些问题都将在这篇文章中一一解答. 我后悔自己在大三才看到这篇文章,但同时又庆幸自己在大三看到了这篇文章. 好了,这是链接:回首大学四年,

FPGA与CPLD的概念及其区别

一.FPGA与CPLD的基本概念 1.CPLD CPLD主要是由可编程逻辑宏单元(LMC,Logic Macro Cell)围绕中心的可编程互连矩阵单元组成,其中LMC逻辑结构较复杂,并具有复杂的I/O单元互连结构,可由用户根据需要生成特定的电路结构,完成一定的功能.由于 CPLD内部采用固定长度的金属线进行各逻辑块的互连,所以设计的逻辑电路具有时间可预测性,避免了分段式互连结构时序不完全预测的缺点.到90年代,CPLD发展更为迅速,不仅具有电擦除特性,而且出现了边缘扫描及在线可编程等高级特性.

FPGA开发全攻略——概念篇

原文链接: FPGA开发全攻略连载之一:FPGA为什么这么热? FPGA开发全攻略连载之二:为什么工程师要掌握FPGA开发知识? FPGA开发全攻略连载之三:FPGA基本知识与发展趋势(part1) FPGA开发全攻略连载之四:FPGA基本知识与发展趋势(part2) 写在前面 2008年,我参加了几次可编程器件供应商举办的技术研讨会,让我留下深刻印象的是参加这些研讨会的工程师人数之多,简直可以用爆满来形容,很多工程师聚精会神地全天听讲,很少出现吃完午饭就闪人的现象,而且工程师们对研讨会上展出的

【黑金原创教程】 FPGA那些事儿 — 概念篇

前言: 建 模久了,笔者总觉得自己还缺少一种可以从低层(Low Level),至系统层(System Level)再到抽象层(High Level)等贯穿一切的建模技巧.如此执念,间接造就低级建模II的诞生.低级建模II是什么?它是一种建模倾向,也是一种建模技巧.这本<概念篇>是 它的使用手册,内容讲述了相关思想还有方法. <概 念篇>是一本脑洞澎湃的大杂烩,然而点燃这窝猪汤其实是一份情绪.有人经常在笔者耳边洗·脑,说生活就是赚钱买车买楼娶老婆,鬼叫笔者不知道吗?但是人生 赢家不可

关于FPGA的一些你必须知道的概念

前仿真也称为功能仿真,主旨在于验证电路的功能是否符合设计要求,其特点是不考虑电路门延迟与线延迟,主要是验证电路与理想情况是否一致.可综合FPGA代码是用RTL级代码语言描述的,其输入为RTL级代码与Testbench. 后仿真也称为时序仿真或者布局布线后仿真,是指电路已经映射到特定的工艺环境以后,综合考虑电路的路径延迟与门延迟的影响,验证电路能否在一定时序条件下满足设计构想的过程,是否存在时序违规.其输入文件为从布局布线结果中抽象出来的门级网表.Testbench和扩展名为SDO或SDF的标准时

FPGA数字逻辑设计中一些重要的基本概念

一.关于建立时间与保持时间 建立时间(Tsu:Setup time)是指在触发器的时钟信号上升沿到来以前,数据稳定不变的时间,建立时间不够,数据将不能在这个上升沿被打入触发器:保持时间(Th:Hold time)是指在触发器的时钟信号上升沿到来以后,数据稳定不变的时间,如果保持时间不够,数据同样不能被打入触发器.首先:建立时间和保持时间都是器件要求的特性,其中建立时间是器件输入端在时钟信号有效沿到来前,要求输入信号稳定不变的时间,保持时间是器件输入端要求输入信号在时钟信号有效沿到来后保持稳定不变