STM32F4 SPI with DMA

STM32F4 SPI with DMA

A few people have requested code, so I thought I’d post the code showing how I’ve configured my GPIO, timer, SPI, DMA and NVIC modules, along with some explanation of how the system works.
Note that I’m using the STM32F4 Standard Peripheral Libraries.

The first step is to enable clock signals to the required modules via the RCC (Reset and Clock Control) module:

RCC

//Configure the clocks for the required modules

//Enable GPIO peripheral clocks
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);

//Enable the Serial Peripheral Interface peripheral clocks
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);

//Enable the Direct Memory Access peripheral clocks
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE);

//Enable the timer peripheral clocks
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);

GPIO

Next, the required GPIO pins are configured:

#define GPIO_SCAN_PORT            GPIOB
    #define GPIO_SCAN_PIN                GPIO_Pin_7
    #define GPIO_XLAT_PORT              GPIOA
    #define GPIO_XLAT_PIN                 GPIO_Pin_5
    #define GPIO_BLANK_PORT           GPIOB
    #define GPIO_BLANK_PIN              GPIO_Pin_6

//Configure the GPIO Pins
    GPIO_InitTypeDef GPIO_InitStructure;

//Timer3&4 Outputs (TLC5940 GSCLK and BLANK)
    GPIO_InitStructure.GPIO_Pin = (GPIO_Pin_4 | GPIO_Pin_6);
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
    GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
    GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
    GPIO_Init(GPIOB, &GPIO_InitStructure);
    //Connect Timers to the GPIO Pins
    GPIO_PinAFConfig(GPIOB, GPIO_PinSource4, GPIO_AF_TIM3);            //Connect TIM3 OC1 output to PortB Pin4 (GSCLK)
    GPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_TIM4);            //Connect TIM4 OC1 output to PortB Pin6 (BLANK)

//TLC5940 XLAT Pin
    GPIO_InitStructure.GPIO_Pin = GPIO_XLAT_PIN;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
    GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
    GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
    GPIO_Init(GPIO_XLAT_PORT, &GPIO_InitStructure);

//Display SCAN Pin
    GPIO_InitStructure.GPIO_Pin = GPIO_SCAN_PIN;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
    GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
    GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
    GPIO_Init(GPIO_SCAN_PORT, &GPIO_InitStructure);

//SPI2 Pins
    //    SCLK =    PB10
    //    NSS =     PB9
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
    GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
    GPIO_Init(GPIOB, &GPIO_InitStructure);
    GPIO_PinAFConfig(GPIOB, GPIO_PinSource9, GPIO_AF_SPI2);
    GPIO_PinAFConfig(GPIOB, GPIO_PinSource10, GPIO_AF_SPI2);

//    MISO =    PC2
    //    MOSI =    PC3
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3;
    GPIO_Init(GPIOC, &GPIO_InitStructure);
    GPIO_PinAFConfig(GPIOC, GPIO_PinSource2, GPIO_AF_SPI2);
    GPIO_PinAFConfig(GPIOC, GPIO_PinSource3, GPIO_AF_SPI2);

The main points of interest here are that I’m connecting TIM3’s OC1 output directly to a GPIO pin for GSCLK, and TIM4’s OC1 output for the BLANK signal.

SPI

Now the SPI module can be initialised:


//Initialise the SPI module
    SPI_InitTypeDef SPI_InitStructure;

SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;       //The SPI bus setup uses two lines, one for Rx and one for Tx
    SPI_InitStructure.SPI_Mode = SPI_Mode_Master;                                //STM32 is the master with the TLC5940s as slaves
    SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;                             //Use 8-bit data transfers
    SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;                                    //TLC5940 clock is low when idle
    SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;                                //TLC5940 uses first clock transition as the "capturing edge"
    SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;                                        //Software slave-select operation
    SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8; //Set the prescaler
    SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;                             //TLC5940 data is transferred MSB first
    SPI_InitStructure.SPI_CRCPolynomial = 0;                                          //No CRC used

SPI_Init(SPI2, &SPI_InitStructure);                                                    //Initialise the SPI2 peripheral
    SPI_SSOutputCmd(SPI2, ENABLE);                                                 //Set the SS Pin as an Output (master mode)
    SPI_Cmd(SPI2, ENABLE);


My choice of SPI clock prescaler is fairly arbitrary, but the key points here are that I’ve configured the clock phase and polarity

as per the TLC5940 datasheet, and all transfers will be 8bits (more on this later).

DMA

DMA module for SPI transfers is as follows:


//Initialise the DMA1 Stream 4 Channel 0 for SPI2_TX DMA access

#define DISP_SCAN_DATA_CNT     (24 * 3 * 2)                                                   //24 bytes per chip, one chip per colour (RGB), two boards
    volatile uint8_t dispData0[DISP_SCAN_DATA_CNT];
    volatile uint8_t dispData1[DISP_SCAN_DATA_CNT];

DMA_InitTypeDef DMA_InitStructure;

DMA_InitStructure.DMA_Channel = DMA_Channel_0;                                          //SPI2 Tx DMA is DMA1/Stream4/Channel0
    DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(SPI2->DR);                //Set the SPI2 Tx
    DMA_InitStructure.DMA_Memory0BaseAddr  = (uint32_t)&dispData0;                   //Set the memory location
    DMA_InitStructure.DMA_DIR  = DMA_DIR_MemoryToPeripheral;                          //Sending data from memory to the peripheral‘s Tx register
    DMA_InitStructure.DMA_BufferSize  = DISP_SCAN_DATA_CNT;                          //Define the number of bytes to send
    DMA_InitStructure.DMA_PeripheralInc  = DMA_PeripheralInc_Disable;                  //Don‘t increment the peripheral ‘memory‘
    DMA_InitStructure.DMA_MemoryInc  = DMA_MemoryInc_Enable;                        //Increment the memory location
    DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte;    //Byte size memory transfers
    DMA_InitStructure.DMA_MemoryDataSize  = DMA_MemoryDataSize_Byte;         //Byte size memory transfers
    DMA_InitStructure.DMA_Mode  = DMA_Mode_Normal;                                       //Normal mode (not circular)
    DMA_InitStructure.DMA_Priority  = DMA_Priority_High;                                      //Priority is high to avoid saturating the FIFO since we are in direct mode
    DMA_InitStructure.DMA_FIFOMode  = DMA_FIFOMode_Disable;                         //Operate in ‘direct mode‘ without FIFO
    DMA_Init(DMA1_Stream4, &DMA_InitStructure);

//Enable the transfer complete interrupt for DMA1 Stream4
    DMA_ITConfig(DMA1_Stream4, DMA_IT_TC, ENABLE);                                       //Enable the Transfer Complete interrupt


This is a memory to peripheral (SPI module) transfer, sending DISP_SCAN_DATA_CNT (24 * 3 * 2 = 144) bytes per transfer.
The memory address is incremented after every byte, and the Transfer Complete flag generates an interrupt.

NVIC

Next, I’ve configured the NVIC (Nested Vectored Interrupt Controller) for two interrupt service routine triggers:


//Initialise the Nested Vectored Interrupt Controller
    NVIC_InitTypeDef NVIC_InitStructure;

//Enable the TIM4 (BLANK) Interrupt
    NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);

//Enable the DMA1 Stream4 (SPI2_TX) Interrupt
    NVIC_InitStructure.NVIC_IRQChannel = DMA1_Stream4_IRQn;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);


The BLANK interrupt is used for generating the BLANK pulse, initialising DMA transfers, and latching previously transferred data after each SCAN cycle.

Timers

Finally, the timer modules are configured:


     #define TLC5940_GSCLK_COUNTS    256                   //GSCLK Counts between BLANK Pulses
    #define TLC5940_GSCLK_FREQ        1000000            //GSCLK Frequency
    #define TLC5940_BLANK_COUNT      50                     //Padding to allow previous SCAN column’s positive supply rail to turn off before switching to the next column
    #define TIM_APB1_FREQ                  84000000          //Internal TIMx Clock frequency (CK_INT)

//Initalise the Timer Modules
    TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;
    TIM_OCInitTypeDef TIM_OCInitStructure;

//Deinitialise timer modules and the initialisation structures
    TIM_DeInit(TIM3);
    TIM_DeInit(TIM4);
    TIM_TimeBaseStructInit(&TIM_BaseInitStructure);
    TIM_OCStructInit(&TIM_OCInitStructure);

//Setup the TIM3 to generate the ‘master clock‘
    TIM_BaseInitStructure.TIM_Period = 1;
    TIM_BaseInitStructure.TIM_Prescaler = (uint16_t) (((TIM_APB1_FREQ / TLC5940_GSCLK_FREQ)/4) - 1);    //Note that the division factor of 4 is due to the OC1 freq vs CK_INT freq
    TIM_BaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
    TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseInit(TIM3, &TIM_BaseInitStructure);
    //Configure Channel 1 Output Compare as the Trigger Output (used to generate the ‘GSCLK‘ signal)
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle;
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
    TIM_OCInitStructure.TIM_Pulse = 1;
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
    TIM_OC1Init(TIM3, &TIM_OCInitStructure);
    TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable);

//Setup the TIM4 base for a symmetrical counter with a maximum count specified as the ‘GSCLK count‘ (effectively the TLC5940‘s greyscale resolution)
    TIM_BaseInitStructure.TIM_Period = TLC5940_GSCLK_COUNTS + TLC5940_BLANK_COUNT;                   //GSCLK overflow count (with 1 extra for the BLANK signal to ‘block‘)
    TIM_BaseInitStructure.TIM_Prescaler = 0;
    TIM_BaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
    TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_CenterAligned1;
    TIM_TimeBaseInit(TIM4, &TIM_BaseInitStructure);
    //Configure Channel 1 Output Compare as the Trigger Output (used as the clock signal by TIM4 to generate ‘BLANK‘ pulses)
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
    TIM_OCInitStructure.TIM_Pulse = TLC5940_BLANK_COUNT;
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
    TIM_OC1Init(TIM4, &TIM_OCInitStructure);
    TIM_OC1PreloadConfig(TIM4, TIM_OCPreload_Enable);

//Configure TIM3 as a master timer
    TIM_SelectOutputTrigger(TIM3, TIM_TRGOSource_Update);                 //TRGO is tied to the update of TIM3
    TIM_SelectMasterSlaveMode(TIM3, TIM_MasterSlaveMode_Enable);    //TIM3 enabled as a master

//Configure TIM4 as a slave
    TIM_SelectInputTrigger(TIM4, TIM_TS_ITR2);                                     //Set TIM4 (slave) to trigger off TIM3 (master)
    TIM_SelectSlaveMode(TIM4, TIM_SlaveMode_External1);                   //Use the master signal input as an ‘external clock‘

//Configure the TIM4 module to interrupt at Capture/Compare 1 events (match on both up and down-counting)
    TIM_ITConfig(TIM4, TIM_IT_CC1, ENABLE);

//Enable Timers 3 and 4
    TIM_Cmd(TIM4, ENABLE);
    TIM_Cmd(TIM3, ENABLE);


Here, Timer 3 is used as the master clock, generating the GSCLK signal on its Output Compare 1 line, and driving Timer 4 which is configured as a centre-aligned PWM output on OC1.
Blank count is effectively a padded pulse, allowing for:

  1. Minimum BLANK pulse time
  2. XLAT and DMA transfer triggering
  3. The MOSFET output on the previous SCAN column to fully discharge (I’ve tuned this by viewing discharge time on my oscilloscope)

The GSCLK frequency is set, and the number of GSCLK pulses between falling and rising BLANK signal edges is set to 256 since I’m using 8-bit colour rather than the full capability of the TLC5940 chip (12-bit). This means that there will be 256 GSCLK cycles between BLANK pulses.

The peripherals are now fully configured, so the last thing to do is look at the interrupt service routines, and investigate the results:

ISRs


     #define DISP_SCAN_FREQ                 200                                                                                                                                                                           //Frequency of the SCAN signal
    #define DISP_BLANK_CYCLE_LIMIT    ((((TLC5940_GSCLK_FREQ / (TLC5940_GSCLK_COUNTS + TLC5940_BLANK_COUNT)) / DISP_SCAN_FREQ) / 2) - 1)   //Number of BLANK cycles to count before SCANing

void TIM4_IRQHandler(void)
    {
        //TIM4 IRQ Handler has several tasks:
        //    - Toggles the SCAN signal
       //    - Latches the previously transmitted data for the newly selected (‘scanned‘) column
        //    - Sets up and starts the SPI2 DMA Stream to transmit the next column‘s data
        //All this should be performed within the window of the BLANK signal (TIM4 OC1) being high (not the full SPI transmission)

//Check if the interrupt generated is an OC1 Update
        if(TIM_GetFlagStatus(TIM4,TIM_IT_CC1))
        {
            //Clear the TIM4 CC1 interrupt bit
            TIM_ClearITPendingBit(TIM4, TIM_IT_CC1);

//Only perform event when down-counting (this ensures the XLAT pulse, SCAN update, and SPI transfers are triggered within the BLANK pulse)
            if(TIM4->CR1 & TIM_CR1_DIR)
            {
                //Check if we require a ‘SCAN‘ update (XLAT pulse, SCAN toggle, and next transfer triggered)
                if(dispBlankCycleCnt++ >= DISP_BLANK_CYCLE_LIMIT)
                {
                    GPIO_SetBits(GPIO_XLAT_PORT, GPIO_XLAT_PIN);                  //Set the XLAT pin
                    dispBlankCycleCnt = 0;                                                             //Reset the counter

//Determine the current column, and shift accordingly
                    if(dispCurrentCol)
                    {
                        dispCurrentCol = 0;                                                              //Change to column ‘0‘
                       GPIO_SetBits(GPIO_SCAN_PORT, GPIO_SCAN_PIN);          //Set the SCAN pin (note that column 0 is a logic high, column 1 is a logic low)
                        DMA1_Stream4->M0AR = (uint32_t)&dispData1;                    //Send *next* column‘s data (dispData1 is sent (for the next cycle) since the current column is now ‘0‘)
                   }
                   else
                    {
                        dispCurrentCol = 1;                                                              //Change to column ‘1‘
                        GPIO_ResetBits(GPIO_SCAN_PORT, GPIO_SCAN_PIN);      //Reset the SCAN pin (note that column 0 is a logic high, column 1 is a logic low)
                        DMA1_Stream4->M0AR = (uint32_t)&dispData0;                   //Send *next* column‘s data (dispData0 is sent (for the next cycle) since the current column is now ‘1‘)
                    }

GPIO_ResetBits(GPIO_XLAT_PORT, GPIO_XLAT_PIN);             //Clear the XLAT pin

//Trigger the next transfer
                    SPI_I2S_DMACmd(SPI2, SPI_I2S_DMAReq_Tx, ENABLE);        //Enable the DMA Transmit Request
                    DMA_Cmd(DMA1_Stream4, ENABLE);                                      //Enable the DMA stream assigned to SPI2
                }
            }
        }
    }

void DMA1_Stream4_IRQHandler(void)
    {
        //Check if the transfer complete interrupt flag has been set
        if(DMA_GetITStatus(DMA1_Stream4, DMA_IT_TCIF4) == SET)
        {
            //Clear the DMA1 Stream4 Transfer Complete flag
            DMA_ClearITPendingBit(DMA1_Stream4, DMA_IT_TCIF4);
        }
    }


The DMA ISR is currently not used (I do intend to use it for something unrelated), but the TIM4 ISR essentially controls the whole of the display.
The rising edge of the BLANK pulse (effectively) triggers the interrupt. After determining that the correct ISR triggered the event, the TIM_CR1_DIR bit is used to check if the counter is down-counting. This ensures that we only perform the following tasks at the rising edge of the BLANK pulse.
Every time the ISR is run, we increment a counter and if this counter exceeds the number required to SCAN the display, we latch the previous data using the XLAT signal, toggle the SCAN signal, and transfer the next data (found in the dispData0[ ] or dispData1[ ] arrays.
The number of BLANK cycles to wait before SCANning is calculated in DISP_BLANK_CYCLE_LIMIT, which takes into account:

  1. TLC5940_GSCLK_FREQ – Greyscale clock frequency
  2. TLC5940_GSCLK_COUNTS + TLC5940_BLANK_COUNT – The number of GSCLK pulses between rising BLANK edges
  3. DISP_SCAN_FREQ – The frequency we would like to SCAN the array at (set to 200Hz here)

Updating the data in the dispDatax[ ] arrays will now change what is displayed on the LEDs.
With a GSCLK frequency of 1MHz and a SCAN frequency of 200Hz, I have no noticeable LED flicker even though I’ve heard people talk about using >5MHz to avoid it with their setups.

Logic Analysis

I’ve attached a logic analyser between the STM32F407 outputs and the TLC5940 display-board input and this is what appears:

Now that we know the GSCLK period is as expected, we can investigate the BLANK time to determine the greyscale data is being clocked for 8-bit resolution.
The time between the falling and rising BLANK edges is 305.6 – 49.6 = 256us which is as expected.

I’ve also investigated on a closer level to check the phase of the signals are correct for 2^8 counts.

Finally, checking the scan width, we can see that one column is enabled for 2.445ms.

This means that the SCAN rate is 409Hz; fairly good considering 2.5us =  is not evenly divisible by 256us.
The capture above also shows that when the BLANK count reaches the limit, the associated ISR latches the previous data,

toggles the SCAN line, and then triggers the SPI transfer.

It then counts the required number of BLANK cycles before latching this data (XLAT signal barely visible to the right of the blue arrow where the 2,445ms cursor is).

Feel free to comment on the above, and let me know if anything is unclear.

时间: 2024-11-25 07:44:16

STM32F4 SPI with DMA的相关文章

STM32 DMA

开发平台: STM32Cube + STM32F030R8T6 问题:  STM32 SPI DMA 无法正常发送 解决办法: DMA时钟必须在DMA初始化钱开启,而且DMA中设置自增模式   1. M32Cube 中生成的代码中,有SPI 和DMA的初始化,DMA的时钟初始化在DMA_INIT 中,但是其配置在SPI 中,所以,一定要把DMA_INIT放在SPI_INIT 前面. 2. DMA的配置中,需要设置目标地址和源地址的自增选项   吸取教训: 在使用某个模块之前一定要先去搞懂这个模块

SPI协议详解

 原文链接:https://blog.csdn.net/qq_38410730/article/details/80318821 SPI的基本介绍 SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口,是Motorola首先在其MC68HCXX系列处理器上定义的. SPI接口主要应用在EEPROM.FLASH.实时时钟.AD转换器,还有数字信号处理器和数字信号解码器之间.SPI是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线

STM32F030系列实现仿位带操作

1.闲言 最近开发的时候,用到了STM32F030F4P6型号的单片机,它只有20个引脚,价格非常便宜,但是功能齐全:定时器.外部中断.串口.IIC.SPI.DMA和WWDG等等,应用尽有,非常适合用来做小设备.可是有个问题是,它是Cortex-M0内核的,不像M3,M4内核一样,可以支持位带操作(就是一位一位地操作,像80C51单片机一样),这就给程序移植或者开发带来了一点点小麻烦,因此我就利用C语言结构的位段操作,实现了个访位带操作,只是在效率可能会稍逊于真正的位带操作,但是代码上可以兼容,

Driver Porting and Configuration for A20

Driver Porting and Configuration Porting I/O Control Driver The I/O control driver is built as a module, can be used for controlling common peripherals, such as LED, push button, buzzer. Copy io_control_dev to your ubuntu system, compile it with your

在Nucleo STM32F401RE上使用SPI DMA方式提高W5500传输速率

WIZnet W5500 支持高达 80MHz SPI 时钟,所以用户可用 MCU来提供一个最大传输速率的高速以太网SPI通讯.本文中,我将展示如何用STM32 MCU来让W5500达到最大传输速率. 当使用来自STMicro的Cortex M3/M4产线的32位处理器,以太网传输速率可以在使用SPI通讯模式事产生最大变化.我将比较使用SPI标准模式和SPI DMA模式的不同传输速率. 组成 MCU : Nucleo STM32F401RE 以太网控制器 : WIZnet WIZ550io(内嵌

STM32F4 UART1 DMA发送和接收不定长度数据

STM32F4 串口收发使用DMA还是很方便的.但是配置DMA时需要配置数据长度,这一点对于发送来说可以预估计自己发送的长度来配置DMA发送数据长度,但是对于接收不是很好解决,因为如果使用DMA接收中断是要配置的数据长度减到0才能出发中断.但是我们无法判断接受数据的长度,导致无法判断数据接收完成.网上有提出的解决方法是用定时器固定周期的读DMA接收的长度来判断是否接收完成,也有使用UART的空闲中断来处理的.在这里我使用UART的空闲中断来处理接收不定长数据.当然也要打开DMA接收完成中断,处理

stm32f4 dma + uart idle + double 调试小记

使用 stm32f4 调试uart 接收, 使用 空闲中断,dma 双缓冲模式,有以下几点需要注意的. 调试的时候断点不要打在 if (USART_GetITStatus(USART6, USART_IT_IDLE) != RESET) 这种语句上面,要打在 if 的代码块里面.mdk 调试的时候,会出现一些 bug,当在 if (USART_GetITStatus(USART6, USART_IT_IDLE) != RESET) 断点的时候,能够看到 idle 信号出现,但是只要向下执行,不管

stm32 spi dma tft lcd

http://habrahabr.ru/post/139384 http://electronics.stackexchange.com/questions/100685/full-duplex-slave-spi-dma-and-interrupts-on-stm32f103 https://my.st.com/public/STe2ecommunities/mcu/Lists/cortex_mx_stm32/DispForm.aspx?ID=51426&Source=/public/STe2

【接口】【SPI】Polling Interrupt DMA

三種將資料在I/O間傳送的方法有 1. Polling2. Interrupt-driven I/O3. DMA(Direct Memory Access) Polling:最簡單的方式讓I/O device與CPU溝通.I/O device只要將information放進status register,CPU會周期性的檢查並取得information來得知需要服務的device. Interrupt-driven I/O:利用interrupt的機制,當一個I/O device需要服務時,會發