Binder学习笔记(七)—— ServiceManager如何响应addService请求

有了《ServiceManager如何响应checkService请求》的探索,研究addService就轻车熟路了,中间过程不再多说,仅把关键节点列出:

frameworks/native/cmds/servicemanager/service_manager.c:347

int main(int argc, char **argv)
{
    ……
    binder_loop(bs, svcmgr_handler);
    ……
}

frameworks/native/cmds/servicemanager/binder.c:372

void binder_loop(struct binder_state *bs, binder_handler func)
{
    ……
    for (;;) {
        ……
        res = binder_parse(bs, 0, (uintptr_t) readbuf, bwr.read_consumed, func);
        ……
    }
}

frameworks/native/cmds/servicemanager/binder.c:204

int binder_parse(struct binder_state *bs, struct binder_io *bio,
                 uintptr_t ptr, size_t size, binder_handler func)
{
        ……
        case BR_TRANSACTION: {
            struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
            ……
            if (func) {
                unsigned rdata[256/4];
                struct binder_io msg;
                struct binder_io reply;
                int res;

                bio_init(&reply, rdata, sizeof(rdata), 4);
                bio_init_from_txn(&msg, txn);
                res = func(bs, txn, &msg, &reply);
                binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);
            }
            ptr += sizeof(*txn);
            break;
        }
        ……

    return r;
}

此时的内存数据结构为:

frameworks/native/cmds/servicemanager/service_manager.c:244

int svcmgr_handler(struct binder_state *bs,
                   struct binder_transaction_data *txn,
                   struct binder_io *msg,
                   struct binder_io *reply)
{
    struct svcinfo *si;
    uint16_t *s;
    size_t len;
    uint32_t handle;
    uint32_t strict_policy;
    int allow_isolated;

    ……

    switch(txn->code) {
    ……

    case SVC_MGR_ADD_SERVICE:
        s = bio_get_string16(msg, &len); // "service.testservice"
        if (s == NULL) {
            return -1;
        }
        handle = bio_get_ref(msg);
        allow_isolated = bio_get_uint32(msg) ? 1 : 0;  // 0
        if (do_add_service(bs, s, len, handle, txn->sender_euid,
            allow_isolated, txn->sender_pid))
            return -1;
        break;

    ……
    default:
        ALOGE("unknown code %d\n", txn->code);
        return -1;
    }

    bio_put_uint32(reply, 0);
    return 0;
}

SVC_MGR_ADD_SERVICE分之内从msg读出的数据对照“服务端为addService组织的请求数据”示意图很容易拆解出来,需要看一下bio_get_ref(…),frameworks/native/cmds/servicemanager/binder.c:627

uint32_t bio_get_ref(struct binder_io *bio)
{
    struct flat_binder_object *obj;

    obj = _bio_get_obj(bio);
    if (!obj)
        return 0;

    if (obj->type == BINDER_TYPE_HANDLE)
        return obj->handle;

    return 0;
}

frameworks/native/cmds/servicemanager/binder.c:611

static struct flat_binder_object *_bio_get_obj(struct binder_io *bio)
{
    size_t n;
    size_t off = bio->data - bio->data0;

    /* TODO: be smarter about this? */
    for (n = 0; n < bio->offs_avail; n++) {
        if (bio->offs[n] == off)
            return bio_get(bio, sizeof(struct flat_binder_object));
    }

    bio->data_avail = 0;
    bio->flags |= BIO_F_OVERFLOW;
    return NULL;
}

经过前面几条bio_get_xxx,msg的data指针已经挪到了flat_binder_object实体处,如下图所示,橙色箭头表示msg初始化后到执行bio_get_ref(msg)之前,data指针的挪动情况。_bio_get_obj(…)负责将此flat_binder_object实体返回。

frameworks/native/cmds/servicemanager/service_manager.c:194

int do_add_service(struct binder_state *bs,
                   const uint16_t *s, size_t len,
                   uint32_t handle, uid_t uid, int allow_isolated,
                   pid_t spid)
{   // s="service.testservice", allow_isolated=0, handle=?
    struct svcinfo *si;

    ……

    si = find_svc(s, len);
    if (si) {
        if (si->handle) {
            ALOGE("add_service(‘%s‘,%x) uid=%d - ALREADY REGISTERED, OVERRIDE\n",
                 str8(s, len), handle, uid);
            svcinfo_death(bs, si);
        }
        si->handle = handle;
} else {
    // 重点在这里,如果服务没有add过,则为之创建节点,保存名字和handle
        si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t));
        if (!si) {
            ALOGE("add_service(‘%s‘,%x) uid=%d - OUT OF MEMORY\n",
                 str8(s, len), handle, uid);
            return -1;
        }
        si->handle = handle;
        si->len = len;
        memcpy(si->name, s, (len + 1) * sizeof(uint16_t));
        si->name[len] = ‘\0‘;
        si->death.func = (void*) svcinfo_death;
        si->death.ptr = si;
        si->allow_isolated = allow_isolated;
        si->next = svclist;
        svclist = si;
    }

    binder_acquire(bs, handle);
    binder_link_to_death(bs, handle, &si->death);
    return 0;
}

到这就结束了,最终的落地代码出乎意料的简单:它只是保存服务的name和binder,并把它们串到链表上去。等待客户端checkService则返回handle。总感觉谜团还是没解决,这个handle也就是服务端组织的flat_binder_object数据究竟怎么做到的连接客户端与服务端?ServiceManager的角色应该让C/S关联起来,接下来C、S之间就可以直接通过binder通信了,可是flat_binder_object里面只是保存了服务端的几个指针,客户端怎么凭着这坨binder数据链接到服务端的呢?看来还得研究一条具体的服务请求及响应才能找到最终的答案。

时间: 2024-11-03 05:26:19

Binder学习笔记(七)—— ServiceManager如何响应addService请求的相关文章

Binder学习笔记(五)—— Parcel是怎么打包数据的?

前文中曾经遇到过Parcel,从命名上知道他负责数据打包.在checkService的请求/响应体系中,Parcel只打包了基本数据类型,如Int32.String16……后面还要用于打包抽象数据类型flat_binder_object,这会稍微复杂一些,因此有必要拿出来单独研究.我们从Parcel::writeInterfaceToken(…)追起,它的层层调用关系如下,这些函数都在frameworks/native/libs/binder/Parcel.cpp文件中,行数和函数名为: 582

Linux System Programming 学习笔记(七) 线程

1. Threading is the creation and management of multiple units of execution within a single process 二进制文件是驻留在存储介质上,已被编译成操作系统可以使用,准备执行但没有正运行的休眠程序 进程是操作系统对 正在执行中的二进制文件的抽象:已加载的二进制.虚拟内存.内核资源 线程是进程内的执行单元 processes are running binaries, threads are the smal

第十七篇:博采众长--初探WDDM驱动学习笔记(七)

基于WDDM驱动的DirectX视频加速重定向框架设计与实现 现在的研究生的论文, 真正质量高的, 少之又少, 开题开得特别大, 动不动就要搞个大课题, 从绪论开始到真正自己所做的内容之间, 是东拼西凑地抄概念, 抄公式, 达到字数篇幅的要求, 而自己正真做了什么, 有哪些实际感受, 做出的内容, 相比前面的东拼西凑就几点内容, 之后就草草结束, 步入感谢的段落. 原因不光只有学生自己, 所谓的读研, 如果没有一个环境, 学生有再大的愿望, 再强的毅力, 到头来也只是空无奈. 有些导师要写书,

马哥学习笔记七——LAMP编译安装之MYSQL

1.准备数据存放的文件系统 新建一个逻辑卷,并将其挂载至特定目录即可.这里不再给出过程. 这里假设其逻辑卷的挂载目录为/mydata,而后需要创建/mydata/data目录做为mysql数据的存放目录. 2.新建用户以安全方式运行进程: # groupadd -r mysql # useradd -g mysql -r -s /sbin/nologin -M -d /mydata/data mysql # chown -R mysql:mysql /mydata/data 3.安装并初始化my

Lua学习笔记(七):迭代器与泛型for

1.迭代器与闭包 迭代器是一种支持指针类型的结构,它可以遍历集合的每一个元素.在Lua中我们常常使用函数来描述迭代器,每次调用该函数就返回集合的下一个元素. 迭代器需要保留上一次成功调用的状态和下一次成功调用的状态,也就是他知道来自于哪里和将要前往哪里.闭包提供的机制可以很容易实现这个任务.记住:闭包是一个内部函数,它可以访问一个或者多个外部函数的外部局部变量.每次闭包的成功调用后这些外部局部变量都保存他们的值(状态).当然如果要创建一个闭包必须要创建其外部局部变量.所以一个典型的闭包的结构包含

python学习笔记七:条件&循环语句

1.print/import更多信息 print打印多个表达式,使用逗号隔开 >>> print 'Age:',42 Age: 42   #注意个结果之间有一个空格符 import:从模块导入函数 import 模块 from 模块 import 函数 from 模块 import * 如果两个模块都有open函数的时候, 1)使用下面方法使用: module1.open()... module2.open()... 2)语句末尾增加as子句 >>> import ma

swift学习笔记(七)自动引用计数

与Object-c一样,swift使用自动引用计数来跟踪并管理应用使用的内存.当实例不再被使用时,及retainCount=0时,会自动释放是理所占用的内存空间. 注:引用计数仅适用于类的实例,因为struct和enumeration属于值类型,也就不牵涉引用,所以其存储和管理方式并不是引用计数. 当一个实例被初始化时,系统会自动分配一定的内存空间,用于管理属性和方法.当实例对象不再被使用时,其内存空间被收回. swift中的引用类型分为三种,即Strong强引用,weak弱引用和无主引用unw

Swift学习笔记七:闭包

闭包可以 捕获 和存储其所在上下文中任意常量和变量的引用. Swift 会为您管理在 捕获 过程中涉及到的内存操作. 在 函数 章节中介绍的全局和嵌套函数实际上也是特殊的闭包,闭包采取如下三种形式之一: 1. 全局函数是一个有名字但不会捕获任何值的闭包 2. 嵌套函数是一个有名字并可以捕获其封闭函数域内值的闭包 3. 闭包表达式是一个可以捕获其上下文中变量或常量值的没有名字的闭包 一.闭包表达式 闭包函数类似于Objective-C中的block.下面我们用事实说话: let counts =

[ajax 学习笔记] ajax 的服务器响应

在上一篇[ajax 学习笔记] ajax初试中,简单了解了一下ajax. 我是参考AJAX详解.chm学习的,资源已上传.参考链接:Ajax 专题 今天又学习了ajax中关于服务器响应的一些知识. ajax中服务器的响应是通过响应函数将服务器返回的数据呈现到页面的.服务器的响应体现在服务器响应回调函数中. 在上一篇的例子中,响应函数为: function updatePage(){ if(xmlHttp.readyState == 4){ //http就绪状态 if(xmlHttp.status