bzoj2431

2431: [HAOI2009]逆序对数列

Time Limit: 5 Sec  Memory Limit: 128 MB
Submit: 1521  Solved: 883
[Submit][Status][Discuss]

Description

对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?

Input

第一行为两个整数n,k。

Output

写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。

Sample Input

样例输入

4 1

Sample Output

样例输出

3

样例说明:

下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;

测试数据范围

30%的数据 n<=12

100%的数据 n<=1000,k<=1000

HINT

Source

Day1

[Submit][Status][Discuss]

HOME Back

题解

首先,我们可以想到,f[i][j]表示i个数有j个逆序对的数列个数,那么f[i][j]=sigma f[i-1][j-k] (0<=k<i)

然后发现这是O(n^3)的,我就不会优化了TAT

后来看了jry大神的博客 发现可以用前缀和进行优化

然后就A了,我果然还是tyts (too young too simple)

/**************************************************************
    Problem: 2431
    User: bbsh
    Language: C++
    Result: Accepted
    Time:32 ms
    Memory:5204 kb
****************************************************************/

#include<cstdio>
#include<iostream>
using namespace std;
#define mod 10000
#define N 1001
int n,k,f[N][N];
int main(){
    scanf("%d%d",&n,&k);
    for(int i=1;i<=n;i++) f[i][0]=1;
    for(int i=2;i<=n;i++){
        int t=f[i-1][0];
        for(int j=1;j<=k;j++){
            if(j-i>=0) t-=f[i-1][j-i];
            t+=f[i-1][j];
            f[i][j]=(t+mod)%mod;
        }
    }
    printf("%d\n",f[n][k]);
    return 0;
}
时间: 2024-10-27 10:28:35

bzoj2431的相关文章

BZOJ2431: [HAOI2009]逆序对数列

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 831  Solved: 473[Submit][Status] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Output 写入一个整数,

[bzoj2431][HAOI2009][逆序对数列] (dp计数)

Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Output 写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果. Sample Input 4 1 Sample Output 3 样例说明: 下列3个数列逆序对数都为1:分别是1

bzoj2431:[HAOI2009]逆序对数列

思路:设f[i][j]表示前i个数逆序对为j的方案数,第i+1个数可以新形成1~i个逆序对,于是f[i][j]=Σf[i-1][j-k],然后用一个前缀和优化成n^2即可. #include<cstdio> #define maxn 1005 #define p 10000 int n,k,sum; int f[maxn][maxn]; int main(){ scanf("%d%d",&n,&k); f[0][0]=1; for (int i=1;i<

bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Status][Discuss] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Ou

【bzoj2431】[HAOI2009]逆序对数列 dp

题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? 输入 第一行为两个整数n,k. 输出 写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果. 样例输入 4 1 样例输出 3 题解 dp傻*题 设f[i][j]表示1~i组成逆序对个数为j的数列的方案数,那么考虑第i个元素,它对逆序对个

bzoj2431: [HAOI2009]逆序对数列(DP)

一眼题...f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<algorithm> #define ll long long using namespace std; const int ma

BZOJ2431 逆序对数列

题解: dp[i][j]表示前i个数的排列有j个逆序列的对数,根据逆序列的性质,最大的放在前i个数列中,新增加0~i-1的序列 dp[i][j]=sum(dp[i-1][j-k]) (0<=k<i) 代码: o(n^3)算法.直接裸就行了 #include<bits/stdc++.h> using namespace std; #define pb push_back #define mp make_pair #define se second #define fs first #

BZOJ-2431: [HAOI2009]逆序对数列 (傻逼递推)

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2401  Solved: 1389[Submit][Status][Discuss] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Ou

bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, 所以放在i+1后面的所有数都会与i+1形成逆序对 转移方程:dp[i][j]=Σ dp[i-1][j-k]  k∈[0,min(j,i-1)] 前缀和优化 朴素的DP #include<cstdio> #include<algorithm> using namespace std;