Leetcode 69. Sqrt(x) 解题报告【C库函数sqrt(x)模拟-求平方根】

69. Sqrt(x)

Total Accepted: 93296 Total
Submissions: 368340 Difficulty: Medium

提交网址: https://leetcode.com/problems/sqrtx/

Implement int sqrt(int x).

Compute and return the square root of x.

分析:

解法1:牛顿迭代法(牛顿切线法)

Newton‘s Method(牛顿切线法)是由艾萨克·牛顿在《流数法》(Method of Fluxions,1671年完成,在牛顿死后的1736年公开发表)中最早提出的。约瑟夫·拉弗森也曾于1690年在Analysis Aequationum中提出此方法。它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

蓝线表示方程f(x)而红线表示切线.
可以看出xn+1比xn更靠近f所要求的根x.

既然牛顿迭代法可以用来求解方程的根,那么不妨以方程\(x^2=n\)为例,来试着求解它的根。为此。令\(f(x) = x^2 - n\), 也就是相当于求解f(x)=0的解,如上图所示。

首先随便找一个初始值\(x_0\),如果\(x_0\)不是解,做一个经过\((x_0,f( x_0))\)这个点的切线,与轴的交点为\(x_1\)。同理,如果\(x_1\)不是解,做一个经过\((x_1,f( x_1))\)这个点的切线,与轴的交点为\(x_2\)。
以此类推... 以这样的方式得到的会无限趋近于f(x)=0的解。

判断是否是的解有两种方法:1. 直接计算的值判断f(x)是否为0,2. 判断前后两个解和是否无限接近。

经过这个点\((x_i, f(x_i))\)的切线方程为 \(f(x) = f(x_i) + f‘(x_i)(x - x_i)\)

其中,\(f‘(x_i)\)为\(f(x)\)的导数,本题中导数为\(2x\)。令切线方程等于0 (纵轴截距取0),即可求出:

\(x_{i+1}=x_i - \frac{f(x_i)}{f‘(x_i)}\)

代入\(f(x) = x^2 - n\),继续化简:

\(x_{i+1}=x_i -\frac{x_i^2 - n}{2x_i} = x_i - \frac{x_i}{2} + \frac{n}{2x_i} = \frac{x_i}{2} + \frac{n}{2x_i}\)

基于上述迭代公式,可以给出了一个求平方根的算法。事实上,这也的确是很多语言中内置的开平方函数的实现方法。牛顿迭代法也同样适用于求解其他多次方程的解。

AC代码:

#include <cstdio>
#include<climits>
#include<cmath>
using namespace std;
class Solution {
public:
int mySqrt(int x) {
    if(x < 0) return INT_MIN;
    if(x == 0) return 0;
    double pre = 0;  // res和pre是邻近的两次迭代结果,也可用变量adj表示邻近的值
    double res = 1;      // 在1附近开始找,迭代逼近目标值
    while(abs(res-pre) > 0.000001)  // 判断条件改为res-pre > 0.000001 || res-pre < -0.000001后,运行时间不变
    {
        pre = res;
        res = (res + x/res)/2.0;
    }
    return int(res);  // 返回值要求为int,需强制转换
}
};
// 下面为测试
int main()
{
    int x1=7;
    int x2=2222147483648;
    int x3=-5;
    Solution sol;
    int res1=sol.mySqrt(x1);
    int res2=sol.mySqrt(x2);
    int res3=sol.mySqrt(x3);
    printf("%d \n", res1);
    printf("%d \n", res2);
    printf("%d \n", res3);
    return 0;
}

P.S:本题是求解整数的平方根,并且返回值也是整型。在上述代码基础上稍微做修改,就可以同样适用于double(仅限方法1)。

#include <cstdio>
#include<climits>
#include<cmath>
using namespace std;
class Solution {
public:
double mySqrt(double x) {
    if(x < 0) return INT_MIN;
    if(x == 0) return 0;
    double pre = 0;
    double res = 1;        // 所求值为double时,迭代的初始值不能为0
 //   double res = 0.000001;
 //   double next = 1; //  res和pre是连续两次的迭代结果(邻近值)
    while(abs(res-pre) > 0.000001)  // 判断条件改为res-pre > 0.000001 || res-pre < -0.000001后,运行时间不变
    {
        pre = res;
        res = (res + x/res)/2.0;
    }
    return (res);
}
};
// 下面为测试
int main()
{
    double x1=7;
    double x2=2222147483648;
    double x3=-5;
    Solution sol;
    double res1=sol.mySqrt(x1);
    double res2=sol.mySqrt(x2);
    double res3=sol.mySqrt(x3);
    printf("%lf \n", res1);
    printf("%lf \n", res2);
    printf("%lf \n", res3);
    return 0;
}

PS: 由于所求值为double时,迭代的初始值不能为0。此代码中pre和res可以用res和next替换,见注释部分,当然循环中也得将pre换为next

解法2:二分搜索法

对于一个非负数n,它的平方根取整 ?√x? ≤
(?x/2?+1),如下图所示,有x=1、2、4共3个整数交点,x>4以后?√x?
恒小于 (?x/2?+1).

上图可在浏览器的新标签中打开,高清的

由于int sqrt(int
x)
接受的参数与返回值均为int型,故?√x? ≤
(?x/2?+1)即等价于强数据类型语言(比如:C++、C、Java等)中的√x(目标值)≤ x/2+1 (x为自然数,非负整数).
于是在[0, x/2+1]这个范围内进行二分搜索,可以求出n的int型平方根,mid=(low+up)/2,其初值为x/2,结果应在[low,
up]的mid或up处取得。如果用弱数据类型的语言(比如:PHP、Python、JavaScript等)实现此方法,需先自行ceiling或ceil进行下取整!

但此法不适用于double,因为此法利用了int型的特点。

AC代码:

#include <cstdio>
#include<climits>
using namespace std;
class Solution {
public:
    int mySqrt(int x) {
	if(x<0) return INT_MIN;
    long long low=0;
    long long up=x;
    while(low <= up)
	{
		long long mid=(low+up)/2; // 取中间值mid,在此处如果改为位运算居然使程序变慢了!
		long long square=mid*mid;
		if(x==square) return mid;  // 目标值等于mid处平方,提前退出循环出口
		else if(x>square) low=mid+1;  // 目标值大于mid处平方,在开区间(mid, up]中找,下界low的值调整为mid-1
			else up=mid-1;               // 目标值小于mid处平方,在开区间[low, mid)中找,上界up的值调整为mid+1
	}
	return up;
    }
};
// 下面为测试
int main()
{
    int x1=7;
    int x2=2222147483648;
	int x3=-5;
    Solution sol;
    int res1=sol.mySqrt(x1);
    int res2=sol.mySqrt(x2);
    int res3=sol.mySqrt(x3);
    printf("%d \n", res1);
    printf("%d \n", res2);
    printf("%d \n", res3);
    return 0;
}

此代码运行时间为8 ms,打败了39.64%的C++提交,除以2改成右移1位后,反而变慢了,12 ms,只打败了4.39的C++提交...

相关链接:

http://www.cnblogs.com/AnnieKim/archive/2013/04/18/3028607.html (方法1代码测试未通过,方法2顺利)

http://blog.csdn.net/baimafujinji/article/details/50390841 (参考了循环的出口条件)

时间: 2024-12-06 15:44:30

Leetcode 69. Sqrt(x) 解题报告【C库函数sqrt(x)模拟-求平方根】的相关文章

LeetCode: Pascal&#39;s Triangle 解题报告

Pascal's Triangle Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Return [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] SOLUTION 1:很easy的题.注意记得把List加到ret中.比较简单,每一行的每一个元素有这个规律:1. 左右2边的是1.i, j 表示行,列坐标.2.

[LeetCode]Longest Valid Parentheses, 解题报告

题目 Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring. For "(()", the longest valid parentheses substring is "()", which has length = 2. Another example i

【LeetCode】Insert Interval 解题报告

[题目] Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary). You may assume that the intervals were initially sorted according to their start times. Example 1: Given intervals [1,3],[6,9], insert and m

LeetCode: Unique Paths II 解题报告

Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How many unique paths would there be? An obstacle and empty spac

【LeetCode】Symmetric Tree 解题报告

Symmetric Tree 解题报告 [LeetCode] https://leetcode.com/problems/symmetric-tree/ Total Accepted: 106639 Total Submissions: 313969 Difficulty: Easy Question Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For

【LeetCode】Next Permutation 解题报告

[题目] Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers. If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order). The repl

【LeetCode】Subsets II 解题报告

[题目] Given a collection of integers that might contain duplicates, S, return all possible subsets. Note: Elements in a subset must be in non-descending order. The solution set must not contain duplicate subsets. For example, If S = [1,2,2], a solutio

【LeetCode】3Sum Closest 解题报告

[题目] Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution. For example, given array S = {

Leetcode 115 Distinct Subsequences 解题报告

Distinct Subsequences Total Accepted: 38466 Total Submissions: 143567My Submissions Question Solution Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from