[Codeforces]663E Binary Table

  某变换好题。不过听说还有O(2^n*n^2)DP的……

Description

  给定一个n*m的01矩阵,你可以选择对任意行和任意列取反,使得最终“1”的数量尽量少。

Input

  第一行两个整数n,m。
  接下来n行,每行m个字符,描述一个01矩阵。

Output

  一个整数表示最少的1的数量。

Sample Input

  3 4
  0110
  1010
  0111

Sample Output

  2

HINT

  1 <= n <= 20,1 <= m <= 100000。

Solution

  首先发现矩阵只有20行,经过一番脑补,可以把这二十行压成一个数。

  然后我们就得到了m个数。

  然后在行上的取反就相当于将这m个数同时异或上同一个数。

  然后我们要求的就是,找出一个数,使得这m个数同时异或上这个数后,每个数的二进制位中的0和1的个数的最小值总和最小。

  我们设ans[x]为当异或的数为x时的答案,a数组用来存放m个数,d[x]为x的二进制位中0和1的个数的最小值。

  所以:

    

  我们稍微改一改,用w[x]表示在m个数中,为x的数有多少个:

    

  等等,是不是发现了什么?这不就是卷积FWT的式子吗?

    

  时间复杂度O(nm+2^n*n)。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define MS 23
#define MN 100005
#define MM 1100005
using namespace std;
char c[MS][MN];
int a[MN];
ll A[MM],B[MM],C[MM];
int n,m,ans;

inline int read()
{
    int n=0,f=1; char c=getchar();
    while (c<‘0‘ || c>‘9‘) {if(c==‘-‘)f=-1; c=getchar();}
    while (c>=‘0‘ && c<=‘9‘) {n=n*10+c-‘0‘; c=getchar();}
    return n*f;
}

void FWT(ll* a,int len,bool g)
{
    register int wt,st,i;
    ll x,y;
    for (wt=1;wt<len;wt<<=1)
        for (st=0;st<len;st+=wt<<1)
            for (i=0;i<wt;++i)
            {
                x=a[st+i]; y=a[st+wt+i];
                a[st+i]=x+y; a[st+wt+i]=x-y;
                if (g) a[st+i]>>=1,a[st+wt+i]>>=1;
            }
}

int main()
{
    register int i,j;
    n=read(); m=read(); ans=n*m;
    for (i=0;i<n;++i) scanf("%s",c[i]+1);
    for (i=n-1;i>=0;--i)
        for (j=1;j<=m;++j) a[j]=(a[j]<<1)+c[i][j]-‘0‘;
    for (i=1;i<=m;++i) ++A[a[i]];
    for (i=0;i<(1<<n);++i) B[i]=B[i>>1]+(i&1);
    for (i=0;i<(1<<n);++i) B[i]=min(B[i],n-B[i]);
    FWT(A,1<<n,false); FWT(B,1<<n,false);
    for (i=0;i<(1<<n);++i) C[i]=A[i]*B[i];
    FWT(C,1<<n,true);
    for (i=0;i<(1<<n);++i) ans=min(ans,(int)C[i]);
    printf("%d",ans);
}

Last Word

  如果把FWT中的if语句改成(x+y)/g,(x-y)/g,效率会慢5倍,除法真是个可怕的东西。

时间: 2024-11-06 07:11:48

[Codeforces]663E Binary Table的相关文章

Codeforces 662C Binary Table(快速沃尔什变换)

Problem 给定一个n(≤20)*m(≤100 000)的01矩阵,每次操作可以将一行或一列取反. 求最终1的最少个数. Solution 前置技能:快速沃尔什变换(FWT). 观察到n较小,考虑\(O(2^n)\)枚举每一行选或不选. 不妨设f(x)表示行的操作状态为x时(我们可用一个二进制数表示状态),经过各种列操作后所得到的最少的1的个数. 可以\(O(m)\)再扫一遍所有列.但显然T飞了. 定义\(C_j\)表示有多少列的状态为j:\(E_k\)表示对于某一列而言,若它经过各种行操作

Codeforces 338D GCD Table 中国剩余定理

题目链接:点击打开链接 给定n*m的矩阵,[i,j]的点值为gcd(i,j) 给定一个k长的序列,问是否能匹配上 矩阵的某一行的连续k个元素 思路: 我们要求出一个解(i,j) 使得 i<=n && j<=m 此时输出 YES 对于j j % b[0] = 0 j+1 % b[1] = 0 ··· j+l % b[l] = 0 根据定理:若 a == b (mod n) => (a+c) == b+c (mod n) 所以将上式变换为 j % b[0] = 0 j % b

【CF662C】Binary Table 按位处理

[CF662C]Binary Table 题意:给你一个$n\times m$的01网格,你可以进行任意次操作,每次操作是将一行或一列的数都取反,问你最多可以得到多少个1? $n\le 20,m\le 10^5$ 题解:我也不知道叫啥了,说状压也不对,说fwt也不太对,就叫按位处理得了. 显然有$O(2^nm)$暴力,先枚举每行是否取反,然后枚举每列,如果0多就取反,否则不取. 但我们发现我们完全可以将本质相同的列一起处理,什么叫本质相同的列呢?假如我们对每行是否取反的状态为S,则所有$xor

【CF662C】Binary Table(FWT)

[CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可以将一行或者一列的\(01\)全部翻转 回答表格中最少有多少个\(1\) 题解 发现\(n\)很小,\(m\)很大 状压是跑不掉了 如果我们确定翻转哪些行,那么答案唯一确定(贪心的选每一列中\(0/1\)的较小值) 相同的列显然可以合并, 把每一列按照\(01\)状压,记\(a[i]\)为状态为\(i\)的列

「CF662C」 Binary Table

「CF662C」 Binary Table 题目链接 题目所给的 \(n\) 很小,于是我们可以考虑这样一种朴素做法:暴力枚举第 \(i\) 行是否翻转,这样每一行的状态就确定了,这时取每一列 \(0/1\) 个数较小的数字即可(因为每一列也可以翻转).这样的时间复杂度是 \(O(m\cdot2^n)\). 但是显然这样过不了. 我们发现表格的具体行列对我们的答案是没有影响的.即我们只需要知道状态为 \(x\) 的行或者状态为 \(x\) 的列的个数即可.由于 \(n\le20\),这启发我们对

CF662C Binary Table

LINK:CF662C Binary Table 一个nm的表格 每个元素都是0/1 每次操作可以选择一行或一列 将0/1翻转.可以操作无限次. 问最终局面最少有多少个1.\(n\leq 20,m\leq 100000\) 可以发现 先翻列再翻行等价于先翻行再翻列 先翻行再翻列再翻行 如果行是相同的 等价于翻列 反之同上一种情况. 对于任意一对行列之间的关系只有上述的几种情况 故可以发现 最优操作可以转换成 先翻行再翻列. 之所以这样是发现了行数较少 暴力枚举行的状态. 此时只有列能翻了 每一列

Binary Table CodeForces - 662C (FWT)

大意: 给定$nm$大小的$01$矩阵, $1\le n\le 20,1\le m\le 1e5$, 可以任选行列翻转, 求最终$1$总数最少为多少. 显然有$O(m2^n)$的暴力算法 也就是枚举翻转哪些行, 然后对于一列, 若$1$的个数多于$0$的个数就翻转. 可以发现对于相同的列, 翻转行对它的影响是相同的. 用$a_i$记录状态为$i$的列的个数, $b_i$记录状态为$i$的列的贡献. 假设翻转行状态为$S$时答案为$f_{S}$, 枚举每种状态的列的贡献, 就有 $$f_{S}=\

CodeForces E. Binary Numbers AND Sum

http://codeforces.com/contest/1066/problem/E You are given two huge binary integer numbers aa and bb of lengths nn and mm respectively. You will repeat the following process: if b>0b>0, then add to the answer the value a & ba & b and divide 

Codeforces E. Number Table

题目链接:http://codeforces.com/problemset/problem/40/E 妙啊... 因为已经确定的格子数目严格小于了$max(n,m)$,所以至少有一行或者一列是空着的,那么除了这一行或者这一列的格子,其余的格子随意填,只要满足了当且对应的行(列)的积是$-1$就好了,用组合数算一算就好了,剩下的空着的一行或者一列用于首尾,可以发现它当且仅有一种放发. 考虑无解:如果$n+m$为奇数,同时还要注意一下如果$n=1$,或者$m=1$的情况 1 #include<ios