【bzoj4540】[Hnoi2016]序列 单调栈+离线+扫描线+树状数组区间修改

题目描述

给出一个序列,多次询问一个区间的所有子区间最小值之和。

输入

输入文件的第一行包含两个整数n和q,分别代表序列长度和询问数。接下来一行,包含n个整数,以空格隔开,第i个整数为ai,即序列第i个元素的值。接下来q行,每行包含两个整数l和r,代表一次询问。

输出

对于每次询问,输出一行,代表询问的答案。

样例输入

5 5
5 2 4 1 3
1 5
1 3
2 4
3 5
2 5

样例输出

28
17
11
11
17



题解

单调栈+离线+扫描线+树状数组区间修改

首先把使用单调栈找出每个数左边第一个大于等于它的数的位置 $lp[i]$ 和右边第一个大于它的数的位置 $rp[i]$ 。

然后每个数的贡献为:左端点在 $[lp[i]+1,i]$ ,右端点在 $[i,rp[i]-1]$ 的所有区间。

如果把区间看作二维平面上的点的话,每个数的贡献相当于是一个矩形,查询范围也是一个矩形。因此问题转化为矩形加、查询矩形和。

可以使用树状数组区间修改来维护,具体方法可以参考 【bzoj3132】上帝造题的七分钟 。

然而本题坐标范围较大,不能直接上二维树状数组,需要使用扫描线去掉一维,然后使用树状数组解决。方法和那道题一样,维护 $\sum v_i,\sum x_iv_i,\sum y_iv_i,\sum x_iy_iv_i$ 即可。

因此离线处理,把每个修改矩形、询问矩形都拆成4个点,放到一起排序,然后扫一遍统计答案即可。(一个小技巧:由于区间左端点一定小于等于右端点,因此整个平面只有横坐标小于等于纵坐标的才有意义,因此可以只把询问矩形拆成两个点)

时间复杂度 $O(n\log n)$

#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
typedef long long ll;
int n , a[N] , sta[N] , top , lp[N] , rp[N] , tot;
ll ans[N];
struct bit
{
	ll v[N];
	inline void add(int x , ll a)
	{
		int i;
		for(i = x ; i <= n ; i += i & -i) v[i] += a;
	}
	inline ll query(int x)
	{
		int i;
		ll ans = 0;
		for(i = x ; i ; i -= i & -i) ans += v[i];
		return ans;
	}
}A , B , C , D;
struct data
{
	int x , y , opt , c;
	data() {}
	data(int p , int q , int r , int s) {x = p , y = q , opt = r , c = s;}
	bool operator<(const data &a)const {return y == a.y ? !opt && a.opt : y < a.y;}
}p[N * 6];
inline void modify(int x , int y , ll a)
{
	A.add(x , a) , B.add(x , a * x) , C.add(x , a * y) , D.add(x , a * x * y);
}
inline ll solve(int x , int y)
{
	return A.query(x) * (x + 1) * (y + 1) - B.query(x) * (y + 1) - C.query(x) * (x + 1) + D.query(x);
}
inline int read()
{
	int ret = 0 , f = 0; char ch = getchar();
	while(!isdigit(ch)) f |= (ch == ‘-‘) , ch = getchar();
	while(isdigit(ch)) ret = ((ret + (ret << 2)) << 1) + (ch ^ ‘0‘) , ch = getchar();
	return f ? -ret : ret;
}
int main()
{
	n = read();
	int m = read() , i , l , r;
	for(i = 1 ; i <= n ; i ++ ) a[i] = read();
	top = 0 , sta[0] = 0;
	for(i = 1 ; i <= n ; i ++ )
	{
		while(top && a[i] < a[sta[top]]) top -- ;
		lp[i] = sta[top] + 1 , sta[++top] = i;
	}
	top = 0 , sta[0] = n + 1;
	for(i = n ; i ; i -- )
	{
		while(top && a[i] <= a[sta[top]]) top -- ;
		rp[i] = sta[top] - 1 , sta[++top] = i;
	}
	for(i = 1 ; i <= n ; i ++ )
	{
		p[++tot] = data(lp[i] , i , 0 , a[i]);
		p[++tot] = data(i + 1 , i , 0 , -a[i]);
		p[++tot] = data(lp[i] , rp[i] + 1 , 0 , -a[i]);
		p[++tot] = data(i + 1 , rp[i] + 1 , 0 , a[i]);
	}
	for(i = 1 ; i <= m ; i ++ )
	{
		l = read() - 1 , r = read();
		p[++tot] = data(r , r , 1 , i);
		p[++tot] = data(l , r , -1 , i);
	}
	sort(p + 1 , p + tot + 1);
	for(i = 1 ; i <= tot ; i ++ )
	{
		if(p[i].opt) ans[p[i].c] += p[i].opt * solve(p[i].x , p[i].y);
		else modify(p[i].x , p[i].y , p[i].c);
	}
	for(i = 1 ; i <= m ; i ++ ) printf("%lld\n" , ans[i]);
	return 0;
}
时间: 2024-10-08 09:58:30

【bzoj4540】[Hnoi2016]序列 单调栈+离线+扫描线+树状数组区间修改的相关文章

【bzoj5173】[Jsoi2014]矩形并 扫描线+二维树状数组区间修改区间查询

题目描述 JYY有N个平面坐标系中的矩形.每一个矩形的底边都平行于X轴,侧边平行于Y轴.第i个矩形的左下角坐标为(Xi,Yi),底边长为Ai,侧边长为Bi.现在JYY打算从这N个矩形中,随机选出两个不同的矩形,并计算它们的并的大小.JYY想知道,交的大小的期望是多少.换句话说即求在所有可能的选择中,两个矩形交的面积的平均大小是多大. 输入 输入一行包含一个正整数N. 接下来N行,每行4个整数,分别为Xi,Yi,Ai,Bi 2 < =  N < =  2*10^5, 0 < =  Xi,

树状数组 区间修改+区间查询

其实直到不久前都几乎不会用树状数组,请教了PPZ大佬之后终于懂了一点点. 然后小蒟蒻现在才知道了树状数组区间修改+区间查询的方法QAQ 传送门 Codevs 线段树练习3 //Twenty #include<cstdio> #include<cstdlib> #include<iostream> #include<algorithm> #include<cmath> #include<cstring> #include<queu

【bzoj3779】重组病毒 LCT+树上倍增+DFS序+树状数组区间修改区间查询

题目描述 给出一棵n个节点的树,每一个节点开始有一个互不相同的颜色,初始根节点为1. 定义一次感染为:将指定的一个节点到根的链上的所有节点染成一种新的颜色,代价为这条链上不同颜色的数目. 现有m次操作,每次为一下三种之一: RELEASE x:对x执行一次感染: RECENTER x:把根节点改为x,并对原来的根节点执行一次感染: REQUEST x:询问x子树中所有节点感染代价的平均值. 输入 输入的第一行包含两个整数n和m,分别代表局域网中计算机的数量,以及操作和询问的总数.接下来n-1行,

【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改

题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少. 输入 第一行N,M接下来M行,每行形如1 a b c或2 a b c 输出 输出每个询问的结果 样例输入 2 5 1 1 2 1 1 1 2 2 2 1 1 2 2 1 1 1 2 1 2 3 样例输出 1 2 1 题解 整体二分+树状数组区间修改 当年naive的树套树题解 前两天由于要

【BZOJ3110】【整体二分+树状数组区间修改/线段树】K大数查询

Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少. Input 第一行N,M 接下来M行,每行形如1 a b c或2 a b c Output 输出每个询问的结果 Sample Input 2 5 1 1 2 1 1 1 2 2 2 1 1 2 2 1 1 1 2 1 2 3 Sample Output 1 2 1 HINT

【POJ3468】【树状数组区间修改】A Simple Problem with Integers

Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval. In

bzoj 3779 重组病毒 —— LCT+树状数组(区间修改+区间查询)

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3779 RELEASE操作可以对应LCT的 access,RECENTER则是 makeroot: 考虑颜色数,把一条实边变成虚边,子树+1,虚变实子树-1: 但有换根操作,怎么维护子树? 也可以用 dfs 序线段树维护,其实换 rt 只是 splay 的根方向改变,对应的子树还是可以找到的: 注意虚边变实或实边变虚时要找子树,不是直接找那个儿子,而是找那个儿子所在 splay 的根: 然后

【树状数组区间修改单点查询】HDU 4031 Attack

http://acm.hdu.edu.cn/showproblem.php?pid=4031 [题意] 有一个长为n的长城,进行q次操作,d为防护罩的冷却时间,Attack表示区间a-b的墙将在1秒后受到攻击, 询问表示计算第a块墙受到攻击的次数,被防护罩抵消的不算 [思路] 总的攻击次数-防护罩抵消的次数 总的攻击次数可以树状数组维护 防护罩抵消的模拟 [AC] 1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long l

【树状数组区间修改区间求和】codevs 1082 线段树练习 3

http://codevs.cn/problem/1082/ [AC] 1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 const int maxn=2e5+2; 5 int n; 6 ll a[maxn]; 7 ll c1[maxn]; 8 ll c2[maxn]; 9 int lowbit(int x) 10 { 11 return x&-x; 12 } 13 void add(l