线性支持向量机(4)

对于线性支持向量机学习来说,模型为分离超平面w*x+b*=0及决策函数f(x)=sign(w*x+b*),其学习策略为软间隔最大化,学习算法为凸二次规划。线性支持向量机学习还有另外一种解释,也就是最小化如下目标函数:

第一项是经验损失,函数:

称为合页损失函数,下标+表示以下取正值的函数:

时间: 2024-11-01 22:02:51

线性支持向量机(4)的相关文章

svm支持向量机系列(1) -- 线性支持向量机

1.主要内容 沿着之前学些机器学习基石课程中学习到的工具进行分析,该工具主要就是vc维,沿着特征转换这一目标进行探讨: (1).当数据的特征的数量很大时,如何进行特征转换?支撑向量机 (2).能不能找到具有预测性的特征然后联合起来? (3).如何发现隐藏的具有预测意义的特征?原先的神经网络到现在的深度学习技术. 这节课主要讲述svm的由来,背后的原理,最佳化的求解问题. 2.线性支持向量机的由来 (1).从线性分类器说起到svm问题的提出 如果数据线性可分,那么必然可以找到一条线对齐进行分类,计

支持向量机原理(二) 线性支持向量机的软间隔最大化模型

? ? ? ? ? ?支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归 在支持向量机原理(一) 线性支持向量机中,我们对线性可分SVM的模型和损失函数优化做了总结.最后我们提到了有时候不能线性可分的原因是线性数据集里面多了少量的异常点,由于这些异常点导致了数据集不能线性可分,本篇就对线性支持向量机如何处理这些异常点的原理方法做一个总结

支持向量机原理(一) 线性支持向量机

? ? ? ? ? ?支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归 支持向量机(Support Vecor Machine,以下简称SVM)虽然诞生只有短短的二十多年,但是自一诞生便由于它良好的分类性能席卷了机器学习领域,并牢牢压制了神经网络领域好多年.如果不考虑集成学习的算法,不考虑特定的训练数据集,在分类算法中的表现SVM说是

02-31 线性支持向量机

[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 线性支持向量机 在线性可分支持向量机中说到线性可分支持向量机有一个缺点是无法对异常点做处理,也正是因为这些异常点导致数据变得线性不可分或者会因为它的正好被判断为支持向量导致模型的泛化能力变差. # 异常点导致数据线性不可分图例 import matplotlib.pyplot as plt from matp

TensorFlow(五) 线性支持向量机的使用

#在TensorFlow实现一个soft margin 支持向量机 #损失函数 惩罚项 使用L2范数 # 1/n*Σmax(0, y(Ax-b)) +Σ||A||^2 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from sklearn import datasets sess=tf.Session() #加载鸢尾花集合 iris=datasets.load_iris() #提取特征 x_v

支持向量机原理(五)线性支持回归

支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归 在前四篇里面我们讲到了SVM的线性分类和非线性分类,以及在分类时用到的算法.这些都关注与SVM的分类问题.实际上SVM也可以用于回归模型,本篇就对如何将SVM用于回归模型做一个总结.重点关注SVM分类和SVM回归的相同点与不同点. 1. SVM回归模型的损失函数度量 回顾下我们前面SV

支持向量机原理(三)线性不可分支持向量机与核函数

支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理(待填坑) 支持向量机原理(五)线性支持回归(待填坑) 在前面两篇我们讲到了线性可分SVM的硬间隔最大化和软间隔最大化的算法,它们对线性可分的数据有很好的处理,但是对完全线性不可分的数据没有办法.本文我们就来探讨SVM如何处理线性不可分的数据,重点讲述核函数在SVM中处理线性不可分数据的作用. 1. 回顾多项式回归 在线

线性可分支持向量机与软间隔最大化--SVM

线性可分支持向量机与软间隔最大化--SVM 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 我们说可以通过间隔最大化或者等价的求出相应的凸二次规划问题得到的分离超平面 以及决策函数: 但是,上述的解决方法对于下面的数据却不是很友好, 例如,下图中黄色的点不满足间隔大于等于1的条件 这样的数据集不是线性可分的, 但是去除少量的异常点之后,剩下的点都是线性可分的, 因此, 我们称这样的数据集是近似线性可分的. 对

python大战机器学习——支持向量机

支持向量机(Support Vector Machine,SVM)的基本模型是定义在特征空间上间隔最大的线性分类器.它是一种二类分类模型,当采用了核技巧之后,支持向量机可以用于非线性分类. 1)线性可分支持向量机(也称硬间隔支持向量机):当训练数据线性可分是,通过硬间隔最大化,学得一个线性可分支持向量机 2)线性支持向量机(也称为软间隔支持向量机):当训练数据近似线性可分时,通过软间隔最大化,学得一个线性支持向量机 3)非线性支持向量机:当训练数据不可分时,通过使用核技巧以及软间隔最大化,学得一