最大子段和问题,最大子矩阵和问题,最大m子段和问题

1、最大子段和问题

     问题定义:对于给定序列a1,a2,a3……an,寻找它的某个连续子段,使得其和最大。如( -2,11,-4,13,-5,-2 )最大子段是{ 11,-4,13 }其和为20。

(1)枚举法求解

枚举法思路如下:

以a[0]开始: {a[0]}, {a[0],a[1]},{a[0],a[1],a[2]}……{a[0],a[1],……a[n]}共n个

以a[1]开始: {a[1]}, {a[1],a[2]},{a[1],a[2],a[3]}……{a[1],a[2],……a[n]}共n-1个

……

以a[n]开始:{a[n]}共1个

一共(n+1)*n/2个连续子段,使用枚举,那么应该可以得到以下算法:
     具体代码如下:

//3d4-1 最大子段和问题的简单算法
#include "stdafx.h"
#include <iostream>
using namespace std; 

int MaxSum(int n,int *a,int& besti,int& bestj);

int main()
{
    int a[] = {-2,11,-4,13,-5,-2};

    for(int i=0; i<6; i++)
    {
        cout<<a[i]<<" ";
    }

    int besti,bestj;

    cout<<endl;
    cout<<"数组a的最大连续子段和为:a["<<besti<<":"<<bestj<<"]:"<<MaxSum(6,a,besti,bestj)<<endl;

    return 0;
}

int MaxSum(int n,int *a,int& besti,int& bestj)
{
    int sum = 0;
    for(int i=0; i<n; i++)//控制求和起始项
    {
        for(int j=i; j<n; j++)//控制求和结束项
        {
            int thissum = 0;
            for(int k=i; k<=j; k++)//求和
            {
                thissum += a[k];
            }

            if(thissum>sum)//求最大子段和
            {
                sum = thissum;
                besti = i;
                bestj = j;
            }
        }
    }
    return sum;
}

从这个算法的三个for循环可以看出,它所需要的计算时间是O(n^3)。事实上,如果注意到,则可将算法中的最后一个for循环省去,避免重复计算,从而使算法得以改进。改进后的代码如下:

//3d4-2 最大子段和问题的避免重复的简单算法
#include "stdafx.h"
#include <iostream>
using namespace std; 

int MaxSum(int n,int *a,int& besti,int& bestj);

int main()
{
    int a[] = {-2,11,-4,13,-5,-2};

    for(int i=0; i<6; i++)
    {
        cout<<a[i]<<" ";
    }

    int besti,bestj;

    cout<<endl;
    cout<<"数组a的最大连续子段和为:a["<<besti<<":"<<bestj<<"]:"<<MaxSum(6,a,besti,bestj)<<endl;

    return 0;
}

int MaxSum(int n,int *a,int& besti,int& bestj)
{
    int sum = 0;
    for(int i=0; i<n; i++)//控制求和起始项
    {
        int thissum = 0;
        for(int j=i; j<=n; j++)//控制求和结束项
        {
            thissum += a[j];//求和
            if(thissum>sum)
            {
                sum = thissum;
                besti = i;
                bestj = j;
            }

        }
    }
    return sum;
}

(2)分治法求解

分治法思路如下:

将序列a[1:n]分成长度相等的两段a[1:n/2]和a[n/2+1:n],分别求出这两段的最大字段和,则a[1:n]的最大子段和有三中情形:

[1]、a[1:n]的最大子段和与a[1:n/2]的最大子段和相同;

[2]、a[1:n]的最大子段和与a[n/2+1:n]的最大子段和相同;

[3]、a[1:n]的最大字段和为,且1<=i<=n/2,n/2+1<=j<=n。

可用递归方法求得情形[1],[2]。对于情形[3],可以看出a[n/2]与a[n/2+1]在最优子序列中。因此可以在a[1:n/2]中计算出,并在a[n/2+1:n]中计算出。则s1+s2即为出现情形[3]时的最优值。

具体代码如下:

//3d4-1 最大子段和问题的分治算法
#include "stdafx.h"
#include <iostream>
using namespace std; 

int MaxSubSum(int *a,int left,int right);
int MaxSum(int n,int *a);

int main()
{
    int a[] = {-2,11,-4,13,-5,-2};

    for(int i=0; i<6; i++)
    {
        cout<<a[i]<<" ";
    }

    cout<<endl;
    cout<<"数组a的最大连续子段和为:"<<MaxSum(6,a)<<endl;

    return 0;
}

int MaxSubSum(int *a,int left,int right)
{
    int sum = 0;
    if(left == right)
    {
        sum = a[left]>0?a[left]:0;
    }
    else
    {
        int center = (left+right)/2;
        int leftsum = MaxSubSum(a,left,center);
        int rightsum = MaxSubSum(a,center+1,right);

        int s1 = 0;
        int lefts = 0;
        for(int i=center; i>=left;i--)
        {
            lefts += a[i];
            if(lefts>s1)
            {
                s1=lefts;
            }
        }

        int s2 = 0;
        int rights = 0;
        for(int i=center+1; i<=right;i++)
        {
            rights += a[i];
            if(rights>s2)
            {
                s2=rights;
            }
        }
        sum = s1+s2;
        if(sum<leftsum)
        {
            sum = leftsum;
        }
        if(sum<rightsum)
        {
            sum = rightsum;
        }

    }
    return sum;
}

int MaxSum(int n,int *a)
{
    return MaxSubSum(a,0,n-1);
}

算法所需的计算时间T(n)满足一下递归式:

解此递归方程可知:T(n)=O(nlogn)。

(3)动态规划算法求解

算法思路如下:

,则所求的最大子段和为:

由b[j]的定义知,当b[j-1]>0时,b[j]=b[j-1]+a[j],否则b[j]=a[j]。由此可得b[j]的动态规划递推式如下:

b[j]=max{b[j-1]+a[j],a[j]},1<=j<=n。

具体代码如下:

//3d4-1 最大子段和问题的动态规划算法
#include "stdafx.h"
#include <iostream>
using namespace std; 

int MaxSum(int n,int *a);

int main()
{
    int a[] = {-2,11,-4,13,-5,-2};

    for(int i=0; i<6; i++)
    {
        cout<<a[i]<<" ";
    }

    cout<<endl;
    cout<<"数组a的最大连续子段和为:"<<MaxSum(6,a)<<endl;

    return 0;
}

int MaxSum(int n,int *a)
{
    int sum=0,b=0;
    for(int i=1; i<=n; i++)
    {
        if(b>0)
        {
            b+=a[i];
        }
        else
        {
            b=a[i];
        }
        if(b>sum)
        {
            sum = b;
        }
    }
    return sum;
}

上述算法的时间复杂度和空间复杂度均为O(n)。

     2、最大子矩阵和问题
        (1)问题描述:给定一个m行n列的整数矩阵A,试求A的一个子矩阵,使其各元素之和为最大。

(2)问题分析:

用二维数组a[1:m][1:n]表示给定的m行n列的整数矩阵。子数组a[i1:i2][j1:j2]表示左上角和右下角行列坐标分别为(i1,j1)和(i2,j2)的子矩阵,其各元素之和记为:

最大子矩阵问题的最优值为。如果用直接枚举的方法解最大子矩阵和问题,需要O(m^2n^2)时间。注意到,式中,,设,则

容易看出,这正是一维情形的最大子段和问题。因此,借助最大子段和问题的动态规划算法MaxSum,可设计出最大子矩阵和动态规划算法如下:

//3d4-5 最大子矩阵之和问题
#include "stdafx.h"
#include <iostream>
using namespace std; 

const int M=4;
const int N=3;

int MaxSum(int n,int *a);
int MaxSum2(int m,int n,int a[M][N]);

int main()
{
    int a[][N] = {{4,-2,9},{-1,3,8},{-6,7,6},{0,9,-5}};

    for(int i=0; i<M; i++)
    {
        for(int j=0; j<N; j++)
        {
            cout<<a[i][j]<<" ";
        }
        cout<<endl;
    }

    cout<<endl;
    cout<<"数组a的最大连续子段和为:"<<MaxSum2(M,N,a)<<endl;

    return 0;
}

int MaxSum2(int m,int n,int a[M][N])
{
    int sum = 0;
    int *b = new int[n+1];
    for(int i=0; i<m; i++)//枚举行
    {
        for(int k=0; k<n;k++)
        {
            b[k]=0;
        }

        for(int j=i;j<m;j++)//枚举初始行i,结束行j
        {
            for(int k=0; k<n; k++)
            {
                b[k] += a[j][k];//b[k]为纵向列之和
                int max = MaxSum(n,b);
                if(max>sum)
                {
                    sum = max;
                }
            }
        }
    }
    return sum;
}

int MaxSum(int n,int *a)
{
    int sum=0,b=0;
    for(int i=1; i<=n; i++)
    {
        if(b>0)
        {
            b+=a[i];
        }
        else
        {
            b=a[i];
        }
        if(b>sum)
        {
            sum = b;
        }
    }
    return sum;
}

以上代码MaxSum2方法的执行过程可用下图表示:


     3、最大m子段和问题

(1)问题描述:给定由n个整数(可能为负数)组成的序列a1,a2,a3……an,以及一个正整数m,要求确定此序列的m个不相交子段的总和达到最大。最大子段和问题是最大m字段和问题当m=1时的特殊情形。

(2)问题分析:设b(i,j)表示数组a的前j项中i个子段和的最大值,且第i个子段含a[j](1<=i<=m,i<=j<=n),则所求的最优值显然为。与最大子段问题相似,计算b(i,j)的递归式为:

其中,表示第i个子段含a[j-1],而项表示第i个子段仅含a[j]。初始时,b(0,j)=0,(1<=j<=n);b(i,0)=0,(1<=i<=m)。

具体代码如下:

//3d4-6 最大m子段问题
#include "stdafx.h"
#include <iostream>
using namespace std; 

int MaxSum(int m,int n,int *a);

int main()
{
    int a[] = {0,2,3,-7,6,4,-5};//数组脚标从1开始
    for(int i=1; i<=6; i++)
    {
        cout<<a[i]<<" ";
    }

    cout<<endl;
    cout<<"数组a的最大连续子段和为:"<<MaxSum(3,6,a)<<endl;
    }

int MaxSum(int m,int n,int *a)
{
    if(n<m || m<1)
        return 0;
    int **b = new int *[m+1];

    for(int i=0; i<=m; i++)
    {
        b[i] = new int[n+1];
    }

    for(int i=0; i<=m; i++)
    {
        b[i][0] = 0;
    }

    for(int j=1;j<=n; j++)
    {
        b[0][j] = 0;
    }

    //枚举子段数目,从1开始,迭代到m,递推出b[i][j]的值
    for(int i=1; i<=m; i++)
    {
        //n-m+i限制避免多余运算,当i=m时,j最大为n,可据此递推所有情形
        for(int j=i; j<=n-m+i; j++)
        {
            if(j>i)
            {
                b[i][j] = b[i][j-1] + a[j];//代表a[j]同a[j-1]一起,都在最后一子段中
                for(int k=i-1; k<j; k++)
                {
                    if(b[i][j]<b[i-1][k]+a[j])
                        b[i][j] = b[i-1][k]+a[j];//代表最后一子段仅包含a[j]
                }
            }
            else
            {
                b[i][j] = b[i-1][j-1]+a[j];//当i=j时,每一项为一子段
            }
        }
    }
    int sum = 0;
    for(int j=m; j<=n; j++)
    {
        if(sum<b[m][j])
        {
            sum = b[m][j];
        }
    }
    return sum;
}

上述算法的时间复杂度为O(mn^2),空间复杂度为O(mn)。其实,上述算法中,计算b[i][j]时,只用到了数组b的第i-1行和第i行的值。因而,算法中只要存储数组b的当前行,不必存储整个数组。另一方面,的值可以在计算i-1行时预先计算并保存起来。计算第i行的值时不必重新计算,节省了计算时间和空间。因此,算法可继续改进如下:

//3d4-7 最大m子段问题
#include "stdafx.h"
#include <iostream>
using namespace std; 

int MaxSum(int m,int n,int *a);

int main()
{
    int a[] = {0,2,3,-7,6,4,-5};//数组脚标从1开始
    for(int i=1; i<=6; i++)
    {
        cout<<a[i]<<" ";
    }

    cout<<endl;
    cout<<"数组a的最大连续子段和为:"<<MaxSum(3,6,a)<<endl;
    }

int MaxSum(int m,int n,int *a)
{
    if(n<m || m<1)
        return 0;
    int *b = new int[n+1];
    int *c = new int[n+1];

    b[0] = 0;//b数组记录第i行的最大i子段和
    c[1] = 0;//c数组记录第i-1行的最大i-1子段和

    for(int i=1; i<=m; i++)
    {
        b[i] = b[i-1] + a[i];
        c[i-1] = b[i];
        int max = b[i];

        //n-m+i限制避免多余运算,当i=m时,j最大为n,可据此递推所有情形
        for(int j=i+1; j<=i+n-m;j++)
        {
            b[j] = b[j-1]>c[j-1]?b[j-1]+a[j]:c[j-1]+a[j];
            c[j-1] = max;//预先保存第j-1行的最大j-1子段和

            if(max<b[j])
            {
                max = b[j];
            }
        }
        c[i+n-m] = max;
    }

    int sum = 0;
    for(int j=m; j<=n; j++)
    {
        if(sum<b[j])
        {
            sum = b[j];
        }
    }
    return sum;
}

上述算法时间复杂度为O(m(n-m)),空间复杂度为O(n)。当m或n-m为常数时,时间复杂度和空间复杂度均为O(n)。

时间: 2024-10-18 16:19:29

最大子段和问题,最大子矩阵和问题,最大m子段和问题的相关文章

动态规划——最大子段和

一.最大子段和 问题 给定N个数A1, A2, ... An,从中选出k(k不固定)个连续的数字 Ai, Ai+1, ... Ai+k-1,使得∑i+k−1iAt 达到最大,求该最大值. 分析     求最大子段和可以用多种算法来解决. (1)直接枚举 max = 0; for i in [1...n] for j in [i....n] sum = 0; for k in [i...j] sum += A[k] if(sum > max) max = sum //时间复杂度为O(n^3) (2

算法重拾之路——最大子段和

***************************************转载请注明出处:http://blog.csdn.net/lttree******************************************** 第二章:动态规划 >最大子段和< 算法描述: ?给定由n个整数(可能为负整数)组成的序列 a1,a2, ... , an ,求该序列形如  从ai 到 aj (i ≤ j)的子段和的最大值.当所有整数均为负整数时定义其最大值为0.根据这个定义,所求的最优值为:

蓝桥杯中的最大子段和问题

题目内容: 给定长度为n的整数序列,a[1...n], 求[1,n]某个子区间[i , j]使得a[i]+-+a[j]和最大.或者求出最大的这个和.例如(-2,11,-4,13,-5,2)的最大子段和为20,所求子区间为[2,4]. 输入描述 第一行为一个整数n,表示数组有n个数据,第二行依次输入n个整数 输出描述 计算出n个整数中连续k个数的最大和 输入样例 5 1 2 3 4 5 7 6 -5 5 8 -13 5 7 输出样例 15 14 分析:若记b[j]为由a中有元素1到元素j(1 <=

环状最大两段子段和

题目描述 给出一段环状序列,即认为A[1]和A[N]是相邻的,选出其中连续不重叠且非空的两段使得这两段和最大. 输入输出格式 输入格式: 输入文件maxsum2.in的第一行是一个正整数N,表示了序列的长度. 第2行包含N个绝对值不大于10000的整数A[i],描述了这段序列,第一个数和第N个数是相邻的. 输出格式: 输入文件maxsum2.out仅包括1个整数,为最大的两段子段和是多少. 输入输出样例 输入样例#1: 7 2 -4 3 -1 2 -4 3 输出样例#1: 9题解:动态规划最大两

hdu1003 dp(最大子段和)

题意:给出一列数,求其中的最大子段和以及该子段的开头和结尾位置. 因为刚学过DP没几天,所以还会这题,我开了一个 dp[100002][2],其中 dp[i][0] 记录以 i 为结尾的最大子段的和, dp[i][1] 记录以第 i 个数 A[i] 为结尾的和最大子段的开始位置. 对于每一个数 A[i] : 我考察它的前一个数 A[i-1] ,若以 A[i-1] 为结尾的最大子段和 dp[i-1][0] 大于等于 0 ,那么在这个基础上加上 A[i] ,一定大于等于 A[i] 本身,所以以第 i

[51NOD1959]循环数组最大子段和(dp,思路)

题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1050 这道题的最大子段和有两种可能,一种是常规的子段和,另一种是从结尾到开头的一个子段.常规做是一种可能,另一种带循环的则可以认为是序列中间有一段最小子段和,把这段最小子段和去掉,剩下的可能就是最大子段和了. 1 #include <bits/stdc++.h> 2 using namespace std; 3 4 typedef long long LL;

动规讲解基础讲解四——最大子段和问题

给出一个整数数组a(正负数都有),如何找出一个连续子数组(可以一个都不取,那么结果为0),使得其中的和最大? 例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13.和为20. 看见这个问题你的第一反应是用什么算法? (1) 枚举?对,枚举是万能的!枚举什么?子数组的位置!好枚举一个开头位置i,一个结尾位置j>=i,再求a[i..j]之间所有数的和,找出最大的就可以啦.好的,时间复杂度? (1.1)枚举i,O(n)(1.2)枚举j,O(n)(1.3)求和a[i..j],O(n

Codeforces 75D Big Maximum Sum 最大子段和 dp

题目链接:点击打开链接 题意: 第一行 n m n个vector 下面n行 第一个数字u表示vector 的大小,然后后面u个数字给出这个vector 最后一行m个数字 表示把上面的vector拼接起来 得到一个大序列,求这个大序列的最大子段和 先预处理出每个vector的最大子段和,左起连续最大,右起连续最大,所有数的和 然后dp 一下.. #include <cstdio> #include <iostream> #include <algorithm> #incl

动态规划2-最大子段和

给出一个整数数组a(正负数都有),如何找出一个连续子数组(可以一个都不取,那么结果为0),使得其中的和最大? 例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13.和为20. 看见这个问题你的第一反应是用什么算法? (1) 枚举?对,枚举是万能的!枚举什么?子数组的位置!好枚举一个开头位置i,一个结尾位置j>=i,再求a[i..j]之间所有数的和,找出最大的就可以啦.好的,时间复杂度? (1.1)枚举i,O(n)(1.2)枚举j,O(n)(1.3)求和a[i..j],O(n