内存对齐

有虚函数的话就有虚表,虚表保存虚函数地址,一个地址占用的长度根据编译器不同有可能不同,vs里面是8个字节,在devc++里面是4个字节。类和结构体的对齐方式相同,有两条规则1、数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。2、结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行

下面是我收集的关于内存对齐的一篇很好的文章:

在最近的项目中,我们涉及到了“内存对齐”技术。对于大部分程序员来说,“内存对齐”对他们来说都应该是“透明的”。“内存对齐”应该是编译器的 “管辖范围”。编译器为程序中的每个“数据单元”安排在适当的位置上。但是C语言的一个特点就是太灵活,太强大,它允许你干预“内存对齐”。如果你想了解更加底层的秘密,“内存对齐”对你就不应该再透明了。

一、内存对齐的原因大部分的参考资料都是如是说的:1、平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。2、性能原因:数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。

二、对齐规则每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。程序员可以通过预编译命令#pragma pack(n),n=1,2,4,8,16来改变这一系数,其中的n就是你要指定的“对齐系数”。

规则:1、数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。2、结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行。3、结合1、2颗推断:当#pragma pack的n值等于或超过所有数据成员长度的时候,这个n值的大小将不产生任何效果。

三、试验我们通过一系列例子的详细说明来证明这个规则吧!我试验用的编译器包括GCC 3.4.2和VC6.0的C编译器,平台为Windows XP + Sp2。

我们将用典型的struct对齐来说明。首先我们定义一个struct:#pragma pack(n) /* n = 1, 2, 4, 8, 16 */struct test_t {int a;char b;short c;char d;};#pragma pack(n)首先我们首先确认在试验平台上的各个类型的size,经验证两个编译器的输出均为:sizeof(char) = 1sizeof(short) = 2sizeof(int) = 4

我们的试验过程如下:通过#pragma pack(n)改变“对齐系数”,然后察看sizeof(struct test_t)的值。

1、1字节对齐(#pragma pack(1))输出结果:sizeof(struct test_t) = 8 [两个编译器输出一致]分析过程:1) 成员数据对齐#pragma pack(1)struct test_t {int a;  /* 长度4 < 1 按1对齐;起始offset=0 0%1=0;存放位置区间[0,3] */char b;  /* 长度1 = 1 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */short c; /* 长度2 > 1 按1对齐;起始offset=5 5%1=0;存放位置区间[5,6] */char d;  /* 长度1 = 1 按1对齐;起始offset=7 7%1=0;存放位置区间[7] */};#pragma pack()成员总大小=8

2) 整体对齐整体对齐系数 = min((max(int,short,char), 1) = 1整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 8 /* 8%1=0 */ [注1]

2、2字节对齐(#pragma pack(2))输出结果:sizeof(struct test_t) = 10 [两个编译器输出一致]分析过程:1) 成员数据对齐#pragma pack(2)struct test_t {int a;  /* 长度4 > 2 按2对齐;起始offset=0 0%2=0;存放位置区间[0,3] */char b;  /* 长度1 < 2 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */short c; /* 长度2 = 2 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */char d;  /* 长度1 < 2 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */};#pragma pack()成员总大小=9

2) 整体对齐整体对齐系数 = min((max(int,short,char), 2) = 2整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 10 /* 10%2=0 */

3、4字节对齐(#pragma pack(4))输出结果:sizeof(struct test_t) = 12 [两个编译器输出一致]分析过程:1) 成员数据对齐#pragma pack(4)struct test_t {int a;  /* 长度4 = 4 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */char b;  /* 长度1 < 4 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */short c; /* 长度2 < 4 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */char d;  /* 长度1 < 4 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */};#pragma pack()成员总大小=9

2) 整体对齐整体对齐系数 = min((max(int,short,char), 4) = 4整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 12 /* 12%4=0 */

4、8字节对齐(#pragma pack(8))输出结果:sizeof(struct test_t) = 12 [两个编译器输出一致]分析过程:1) 成员数据对齐#pragma pack(8)struct test_t {int a;  /* 长度4 < 8 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */char b;  /* 长度1 < 8 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */short c; /* 长度2 < 8 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */char d;  /* 长度1 < 8 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */};#pragma pack()成员总大小=9

2) 整体对齐整体对齐系数 = min((max(int,short,char), 8) = 4整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 12 /* 12%4=0 */

5、16字节对齐(#pragma pack(16))输出结果:sizeof(struct test_t) = 12 [两个编译器输出一致]分析过程:1) 成员数据对齐#pragma pack(16)struct test_t {int a;  /* 长度4 < 16 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */char b;  /* 长度1 < 16 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */short c; /* 长度2 < 16 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */char d;  /* 长度1 < 16 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */};#pragma pack()成员总大小=9

2) 整体对齐整体对齐系数 = min((max(int,short,char), 16) = 4整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 12 /* 12%4=0 */

四、结论8字节和16字节对齐试验证明了“规则”的第3点:“当#pragma pack的n值等于或超过所有数据成员长度的时候,这个n值的大小将不产生任何效果”。另外内存对齐是个很复杂的东西,上面所说的在有些时候也可能不正确。呵呵^_^

[注1]什么是“圆整”?举例说明:如上面的8字节对齐中的“整体对齐”,整体大小=9 按 4 圆整 = 12圆整的过程:从9开始每次加一,看是否能被4整除,这里9,10,11均不能被4整除,到12时可以,则圆整结束。
时间: 2024-12-15 13:24:22

内存对齐的相关文章

内存对齐与自定义类型

一.内存对齐 (一).为什么会有内存对齐? 1.为了提高程序的性能,数据结构(尤其是栈)应该尽可能的在自然边界上对齐.原因是为了访问未对齐的内存,处理器需要进行两次访问,而访问对齐的内存,只需要一次就够了.这种方式称作"以空间换时间"在很多对时间复杂度有要求问题中,会采用这种方法. 2.内存对齐能够增加程序的可移植性,因为不是所有的平台都能随意的访问内存,有些平台只能在特定的地址处处读取内存. 一般情况下内存对齐是编译器的事情,我们不需要考虑,但有些问题还是需要考虑的,毕竟c/c++是

内存对齐,大端字节 &nbsp; 序小端字节序验证

空结构体:对于空结构体,就是只有结构体这个模子,但里面却没有元素的结构体. 例: typedef struct student { }std: 这种空结构体的模子占一个字节,sizeof(std)=1. 柔性数组: 结构体中最后一个元素可以是一个大小未知的数组,称作柔性数组成员,规定柔性数组前面至少有一个元素. typedef struct student { int i; char arr[];     //柔性数组成员 }std: sizeof(std)=4; sizeof求取该结构体大小是

20160402_C++中的内存对齐

原题: 有一个如下的结构体: struct A{  long a1;  short a2;  int a3;  int *a4; }; 请问在64位编译器下用sizeof(struct A)计算出的大小是多少? 答案:24 -------------------------------------------------------------------------------- 本题知识点:C/C++ 预备知识:基本类型占用字节 在32位操作系统和64位操作系统上,基本数据类型分别占多少字节

内存对齐和大小端

一.内存对齐的原因 根本原因:cpu是根据内存访问粒度(memory access granularity,下文简写成MAG)来读取内存,MAG就是cpu一次内存访问操作的数据量,具体数值依赖于特定的平台,一般是2byte.4byte.8byte. 内存对齐:更够减少内存读取次数(相对于内存不对齐),为了访问未对齐的内存,处理器需要作两次内存访问:而对齐的内存访问仅需要一次访问. 二.内存对齐的步骤 每个平台上的编译器都有自己的默认“对齐系数”.同时,我们也可以通过预编译命令#pragma pa

关于内存对齐的那些事

Wrote by mutouyun. (http://darkc.at/about-data-structure-alignment/) 1. 内存对齐(Data Structure Alignment)是什么 内存对齐,或者说字节对齐,是一个数据类型所能存放的内存地址的属性(Alignment is a property of a memory address). 这个属性是一个无符号整数,并且这个整数必须是2的N次方(1.2.4.8.--.1024.--). 当我们说,一个数据类型的内存对齐

c++编程思想(三)--c++中c 续,重点sizeof和内存对齐

之前理论性的太多,下面就是代码及理论结合了 1.sizeof()是一个独立运算符,并不是函数,可以让我们知道任何变量字节数,可以顺带学一下struct,union,内存对齐 内存对齐:为了机器指令快速指向地址值,编译器内部实际上会内存对齐,怎么理解了,以struct为例 先讲一下各个变量类型内存大小 所以struct理论上是:1+2+4+4+4+8+8 = 31,但是实际是 实际大小是32(1+2+1+4)+(4+4)+8+8 然后再把int和short位置调换 实际大小是40   (1+3)+

struct内存对齐1:gcc与VC的差别

struct内存对齐:gcc与VC的差别 内存对齐是编译器为了便于CPU快速访问而采用的一项技术,对于不同的编译器有不同的处理方法. Win32平台下的微软VC编译器在默认情况下采用如下的对齐规则: 任何基本数据类型T的对齐模数就是T的大小,即sizeof(T).比如对于double类型(8字节),就要求该类型数据的地址总是8的倍数,而char类型数据(1字节)则可以从任何一个地址开始.Linux下的GCC奉行的是另外一套规则:任何2字节大小(包括单字节吗?)的数据类型(比如short)的对齐模

c++中类对象的内存对齐

很多C++书籍中都介绍过,一个Class对象需要占用多大的内存空间.最权威的结论是: *非静态成员变量总合.(not static) *加上编译器为了CPU计算,作出的数据对齐处理.(c语言中面试中经常会碰到内存对齐的问题) *加上为了支持虚函数(virtual function),产生的额外负担. 下面给出几个程序来看一下: #include <iostream> #include <cstdio> #include <string> using namespace

C语言内存对齐

C语言的内存对齐什么是内存对齐?为什么要内存对齐?如何行内存对齐?内存对齐是指:数据在内存里放的数据,不是紧密的放在一起,而是按照一定的规则存放.为什么要内存对齐:在32的cpu上,每条指令可以读取32位(4个字节的值),内存对齐是为了保证一次指令可以读到一个完整的数据,减少数据的拼合耗费.如下举例:struct A{ char a; int b;}temp;则temp在内存中的存储是第一种方式(只是为了举例说明,并非实际的内存): |a | 空     |   b       |-------