AI - TensorFlow - 示例:影评文本分类

影评文本分类

文本分类(Text classification):https://www.tensorflow.org/tutorials/keras/basic_text_classification
主要步骤:

  • 1.加载IMDB数据集
  • 2.探索数据:了解数据格式、将整数转换为字词
  • 3.准备数据
  • 4.构建模型:隐藏单元、损失函数和优化器
  • 5.创建验证集
  • 6.训练模型
  • 7.评估模型
  • 8.可视化:创建准确率和损失随时间变化的图

IMDB数据集

https://www.tensorflow.org/api_docs/python/tf/keras/datasets/imdb
包含来自互联网电影数据库的50000条影评文本

tf.keras

是一种用于在TensorFlow中构建和训练模型的高阶API:https://www.tensorflow.org/api_docs/python/tf/keras/
MLCC文本分类指南:https://developers.google.com/machine-learning/guides/text-classification/

示例

脚本内容

  1 # coding=utf-8
  2 import tensorflow as tf
  3 from tensorflow import keras
  4 import numpy as np
  5 import matplotlib.pyplot as plt
  6 import pathlib
  7 import os
  8
  9 os.environ[‘TF_CPP_MIN_LOG_LEVEL‘] = ‘2‘
 10 print("TensorFlow version:", tf.__version__)  # TensorFlow版本
 11 cwd = str(pathlib.Path.cwd()) + "\\"  # 当前目录
 12
 13 # ### 查看numpy格式数据
 14 np_data = np.load(cwd + "imdb.npz")
 15 print("np_data keys: ", list(np_data.keys()))  # 查看所有的键
 16 # print("np_data values: ", list(np_data.values()))  # 查看所有的值
 17 # print("np_data items: ", list(np_data.items()))  # 查看所有的item
 18
 19 # ### 加载IMDB数据集
 20 imdb = keras.datasets.imdb
 21 (train_data, train_labels), (test_data, test_labels) = imdb.load_data(
 22     path=cwd + "imdb.npz",
 23     num_words=10000  # 保留训练数据中出现频次在前10000位的字词
 24 )
 25
 26 # ### 探索数据:了解数据格式
 27 # 数据集已经过预处理:每个样本都是一个整数数组,表示影评中的字词
 28 # 每个标签都是整数值 0 或 1,其中 0 表示负面影评,1 表示正面影评
 29 print("Training entries: {}, labels: {}".format(len(train_data), len(train_labels)))
 30 print("First record: {}".format(train_data[0]))  # 第一条影评(影评文本已转换为整数,其中每个整数都表示字典中的一个特定字词)
 31 print("Before len:{} len:{}".format(len(train_data[0]), len(train_data[1])))  # 影评的长度会有所不同
 32 # 将整数转换回字词
 33 word_index = imdb.get_word_index(cwd + "imdb_word_index.json")  # 整数值与词汇的映射字典
 34 word_index = {k: (v + 3) for k, v in word_index.items()}
 35 word_index["<PAD>"] = 0
 36 word_index["<START>"] = 1
 37 word_index["<UNK>"] = 2  # unknown
 38 word_index["<UNUSED>"] = 3
 39 reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
 40
 41
 42 def decode_review(text):
 43     """查询包含整数到字符串映射的字典对象"""
 44     return ‘ ‘.join([reverse_word_index.get(i, ‘?‘) for i in text])
 45
 46
 47 print("The content of first record: ", decode_review(train_data[0]))  # 显示第1条影评的文本
 48
 49 # ### 准备数据
 50 # 影评(整数数组)必须转换为张量,然后才能馈送到神经网络中,而且影评的长度必须相同
 51 # 采用方法:填充数组,使之都具有相同的长度,然后创建一个形状为 max_length * num_reviews 的整数张量
 52 train_data = keras.preprocessing.sequence.pad_sequences(train_data,
 53                                                         value=word_index["<PAD>"],
 54                                                         padding=‘post‘,
 55                                                         maxlen=256)  # 使用 pad_sequences 函数将长度标准化
 56 test_data = keras.preprocessing.sequence.pad_sequences(test_data,
 57                                                        value=word_index["<PAD>"],
 58                                                        padding=‘post‘,
 59                                                        maxlen=256)
 60 print("After - len: {} len: {}".format(len(train_data[0]), len(train_data[1])))  # 样本的影评长度都已相同
 61 print("First record: \n", train_data[0])  # 填充后的第1条影评
 62
 63 # ### 构建模型
 64 # 本示例中,输入数据由字词-索引数组构成。要预测的标签是 0 或 1
 65 # 按顺序堆叠各个层以构建分类器(模型有多少层,每个层有多少个隐藏单元)
 66 vocab_size = 10000  # 输入形状(用于影评的词汇数)
 67 model = keras.Sequential()  # 创建一个Sequential模型,然后通过简单地使用.add()方法将各层添加到模型
 68
 69 # Embedding层:在整数编码的词汇表中查找每个字词-索引的嵌入向量
 70 # 模型在接受训练时会学习这些向量,会向输出数组添加一个维度(batch, sequence, embedding)
 71 model.add(keras.layers.Embedding(vocab_size, 16))
 72 # GlobalAveragePooling1D 层通过对序列维度求平均值,针对每个样本返回一个长度固定的输出向量
 73 model.add(keras.layers.GlobalAveragePooling1D())
 74 # 长度固定的输出向量会传入一个全连接 (Dense) 层(包含 16 个隐藏单元)
 75 model.add(keras.layers.Dense(16, activation=tf.nn.relu))
 76 # 最后一层与单个输出节点密集连接。应用sigmoid激活函数后,结果是介于 0 到 1 之间的浮点值,表示概率或置信水平
 77 model.add(keras.layers.Dense(1, activation=tf.nn.sigmoid))
 78 print("Model summary: ".format(model.summary()))
 79
 80 # ### 损失函数和优化器
 81 # 模型在训练时需要一个损失函数和一个优化器
 82 # 有多种类型的损失函数,一般来说binary_crossentropy更适合处理概率问题,可测量概率分布之间的“差距”
 83 model.compile(optimizer=tf.train.AdamOptimizer(),  # 优化器
 84               loss=‘binary_crossentropy‘,  # 损失函数
 85               metrics=[‘accuracy‘])  # 在训练和测试期间的模型评估标准
 86
 87 # ### 创建验证集
 88 # 仅使用训练数据开发和调整模型,然后仅使用一次测试数据评估准确率
 89 # 从原始训练数据中分离出验证集,可用于检查模型处理从未见过的数据的准确率
 90 x_val = train_data[:10000]  # 从原始训练数据中分离出10000个样本,创建一个验证集
 91 partial_x_train = train_data[10000:]
 92 y_val = train_labels[:10000]  # 从原始训练数据中分离出10000个样本,创建一个验证集
 93 partial_y_train = train_labels[10000:]
 94
 95 # ### 训练模型
 96 # 对partial_x_train和partial_y_train张量中的所有样本进行迭代
 97 # 在训练期间,监控模型在验证集(x_val, y_val)的10000个样本上的损失和准确率
 98 history = model.fit(partial_x_train,
 99                     partial_y_train,
100                     epochs=40,  # 训练周期(训练模型迭代轮次)
101                     batch_size=512,  # 批量大小(每次梯度更新的样本数)
102                     validation_data=(x_val, y_val),  # 验证数据
103                     verbose=2  # 日志显示模式:0为安静模式, 1为进度条(默认), 2为每轮一行
104                     )  # 返回一个 History 对象,包含一个字典,其中包括训练期间发生的所有情况
105
106 # ### 评估模型
107 # 在测试模式下返回模型的误差值和评估标准值
108 results = model.evaluate(test_data, test_labels)  # 返回两个值:损失(表示误差的数字,越低越好)和准确率
109 print("Result: {}".format(results))
110
111 # ### 可视化
112 history_dict = history.history  # model.fit方法返回一个History回调,它具有包含连续误差的列表和其他度量的history属性
113 print("Keys: {}".format(history_dict.keys()))  # 4个条目,每个条目对应训练和验证期间的一个受监控指标
114 loss = history.history[‘loss‘]
115 validation_loss = history.history[‘val_loss‘]
116 accuracy = history.history[‘acc‘]
117 validation_accuracy = history.history[‘val_acc‘]
118 epochs = range(1, len(accuracy) + 1)
119
120 plt.subplot(121)  # 创建损失随时间变化的图,作为1行2列图形矩阵中的第1个subplot
121 plt.plot(epochs, loss, ‘bo‘, label=‘Training loss‘)  # 绘制图形, 参数“bo”表示蓝色圆点状(blue dot)
122 plt.plot(epochs, validation_loss, ‘b‘, label=‘Validation loss‘)  # 参数“b”表示蓝色线状(solid blue line)
123 plt.title(‘Training and validation loss‘)  # 标题
124 plt.xlabel(‘Epochs‘)  # x轴标签
125 plt.ylabel(‘Loss‘)  # y轴标签
126 plt.legend()  # 绘制图例
127
128 plt.subplot(122)  # 创建准确率随时间变化的图
129 plt.plot(epochs, accuracy, color=‘red‘, marker=‘o‘, label=‘Training accuracy‘)
130 plt.plot(epochs, validation_accuracy, ‘r‘, linewidth=1, label=‘Validation accuracy‘)
131 plt.title(‘Training and validation accuracy‘)
132 plt.xlabel(‘Epochs‘)
133 plt.ylabel(‘Accuracy‘)
134 plt.legend()
135
136 plt.show()  # 显示图形

运行结果

TensorFlow version: 1.12.0
np_data keys:  [‘x_test‘, ‘x_train‘, ‘y_train‘, ‘y_test‘]
Training entries: 25000, labels: 25000
First record: [1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65, 458, 4468, 66, 3941, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112, 50, 670, 2, 9, 35, 480, 284, 5, 150, 4, 172, 112, 167, 2, 336, 385, 39, 4, 172, 4536, 1111, 17, 546, 38, 13, 447, 4, 192, 50, 16, 6, 147, 2025, 19, 14, 22, 4, 1920, 4613, 469, 4, 22, 71, 87, 12, 16, 43, 530, 38, 76, 15, 13, 1247, 4, 22, 17, 515, 17, 12, 16, 626, 18, 2, 5, 62, 386, 12, 8, 316, 8, 106, 5, 4, 2223, 5244, 16, 480, 66, 3785, 33, 4, 130, 12, 16, 38, 619, 5, 25, 124, 51, 36, 135, 48, 25, 1415, 33, 6, 22, 12, 215, 28, 77, 52, 5, 14, 407, 16, 82, 2, 8, 4, 107, 117, 5952, 15, 256, 4, 2, 7, 3766, 5, 723, 36, 71, 43, 530, 476, 26, 400, 317, 46, 7, 4, 2, 1029, 13, 104, 88, 4, 381, 15, 297, 98, 32, 2071, 56, 26, 141, 6, 194, 7486, 18, 4, 226, 22, 21, 134, 476, 26, 480, 5, 144, 30, 5535, 18, 51, 36, 28, 224, 92, 25, 104, 4, 226, 65, 16, 38, 1334, 88, 12, 16, 283, 5, 16, 4472, 113, 103, 32, 15, 16, 5345, 19, 178, 32]
Before len:218 len:189
The content of first record:  <START> this film was just brilliant casting location scenery story direction everyone‘s really suited the part they played and you could just imagine being there robert <UNK> is an amazing actor and now the same being director <UNK> father came from the same scottish island as myself so i loved the fact there was a real connection with this film the witty remarks throughout the film were great it was just brilliant so much that i bought the film as soon as it was released for <UNK> and would recommend it to everyone to watch and the fly fishing was amazing really cried at the end it was so sad and you know what they say if you cry at a film it must have been good and this definitely was also <UNK> to the two little boy‘s that played the <UNK> of norman and paul they were just brilliant children are often left out of the <UNK> list i think because the stars that play them all grown up are such a big profile for the whole film but these children are amazing and should be praised for what they have done don‘t you think the whole story was so lovely because it was true and was someone‘s life after all that was shared with us all
After - len: 256 len: 256
First record:
 [   1   14   22   16   43  530  973 1622 1385   65  458 4468   66 3941
    4  173   36  256    5   25  100   43  838  112   50  670    2    9
   35  480  284    5  150    4  172  112  167    2  336  385   39    4
  172 4536 1111   17  546   38   13  447    4  192   50   16    6  147
 2025   19   14   22    4 1920 4613  469    4   22   71   87   12   16
   43  530   38   76   15   13 1247    4   22   17  515   17   12   16
  626   18    2    5   62  386   12    8  316    8  106    5    4 2223
 5244   16  480   66 3785   33    4  130   12   16   38  619    5   25
  124   51   36  135   48   25 1415   33    6   22   12  215   28   77
   52    5   14  407   16   82    2    8    4  107  117 5952   15  256
    4    2    7 3766    5  723   36   71   43  530  476   26  400  317
   46    7    4    2 1029   13  104   88    4  381   15  297   98   32
 2071   56   26  141    6  194 7486   18    4  226   22   21  134  476
   26  480    5  144   30 5535   18   51   36   28  224   92   25  104
    4  226   65   16   38 1334   88   12   16  283    5   16 4472  113
  103   32   15   16 5345   19  178   32    0    0    0    0    0    0
    0    0    0    0    0    0    0    0    0    0    0    0    0    0
    0    0    0    0    0    0    0    0    0    0    0    0    0    0
    0    0    0    0]
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
embedding (Embedding)        (None, None, 16)          160000
_________________________________________________________________
global_average_pooling1d (Gl (None, 16)                0
_________________________________________________________________
dense (Dense)                (None, 16)                272
_________________________________________________________________
dense_1 (Dense)              (None, 1)                 17
=================================================================
Total params: 160,289
Trainable params: 160,289
Non-trainable params: 0
_________________________________________________________________
Model summary:
Train on 15000 samples, validate on 10000 samples
Epoch 1/40
 - 1s - loss: 0.6914 - acc: 0.5768 - val_loss: 0.6887 - val_acc: 0.6371
Epoch 2/40
 - 1s - loss: 0.6835 - acc: 0.7170 - val_loss: 0.6784 - val_acc: 0.7431
Epoch 3/40
 - 1s - loss: 0.6680 - acc: 0.7661 - val_loss: 0.6591 - val_acc: 0.7566
Epoch 4/40
 - 1s - loss: 0.6407 - acc: 0.7714 - val_loss: 0.6290 - val_acc: 0.7724
Epoch 5/40
 - 1s - loss: 0.6016 - acc: 0.8012 - val_loss: 0.5880 - val_acc: 0.7914
Epoch 6/40
 - 1s - loss: 0.5543 - acc: 0.8191 - val_loss: 0.5435 - val_acc: 0.8059
Epoch 7/40
 - 1s - loss: 0.5040 - acc: 0.8387 - val_loss: 0.4984 - val_acc: 0.8256
Epoch 8/40
 - 1s - loss: 0.4557 - acc: 0.8551 - val_loss: 0.4574 - val_acc: 0.8390
Epoch 9/40
 - 1s - loss: 0.4132 - acc: 0.8659 - val_loss: 0.4227 - val_acc: 0.8483
Epoch 10/40
 - 1s - loss: 0.3763 - acc: 0.8795 - val_loss: 0.3946 - val_acc: 0.8558
Epoch 11/40
 - 1s - loss: 0.3460 - acc: 0.8874 - val_loss: 0.3740 - val_acc: 0.8601
Epoch 12/40
 - 1s - loss: 0.3212 - acc: 0.8929 - val_loss: 0.3540 - val_acc: 0.8689
Epoch 13/40
 - 1s - loss: 0.2984 - acc: 0.8999 - val_loss: 0.3402 - val_acc: 0.8713
Epoch 14/40
 - 1s - loss: 0.2796 - acc: 0.9057 - val_loss: 0.3280 - val_acc: 0.8737
Epoch 15/40
 - 1s - loss: 0.2633 - acc: 0.9101 - val_loss: 0.3187 - val_acc: 0.8762
Epoch 16/40
 - 1s - loss: 0.2493 - acc: 0.9141 - val_loss: 0.3110 - val_acc: 0.8786
Epoch 17/40
 - 1s - loss: 0.2356 - acc: 0.9200 - val_loss: 0.3046 - val_acc: 0.8791
Epoch 18/40
 - 1s - loss: 0.2237 - acc: 0.9237 - val_loss: 0.2994 - val_acc: 0.8810
Epoch 19/40
 - 1s - loss: 0.2126 - acc: 0.9278 - val_loss: 0.2955 - val_acc: 0.8829
Epoch 20/40
 - 1s - loss: 0.2028 - acc: 0.9316 - val_loss: 0.2920 - val_acc: 0.8832
Epoch 21/40
 - 1s - loss: 0.1932 - acc: 0.9347 - val_loss: 0.2893 - val_acc: 0.8836
Epoch 22/40
 - 1s - loss: 0.1844 - acc: 0.9389 - val_loss: 0.2877 - val_acc: 0.8843
Epoch 23/40
 - 1s - loss: 0.1765 - acc: 0.9421 - val_loss: 0.2867 - val_acc: 0.8853
Epoch 24/40
 - 1s - loss: 0.1685 - acc: 0.9469 - val_loss: 0.2852 - val_acc: 0.8844
Epoch 25/40
 - 1s - loss: 0.1615 - acc: 0.9494 - val_loss: 0.2848 - val_acc: 0.8858
Epoch 26/40
 - 1s - loss: 0.1544 - acc: 0.9522 - val_loss: 0.2850 - val_acc: 0.8859
Epoch 27/40
 - 1s - loss: 0.1486 - acc: 0.9543 - val_loss: 0.2860 - val_acc: 0.8847
Epoch 28/40
 - 1s - loss: 0.1424 - acc: 0.9573 - val_loss: 0.2857 - val_acc: 0.8867
Epoch 29/40
 - 1s - loss: 0.1367 - acc: 0.9587 - val_loss: 0.2867 - val_acc: 0.8867
Epoch 30/40
 - 1s - loss: 0.1318 - acc: 0.9607 - val_loss: 0.2882 - val_acc: 0.8863
Epoch 31/40
 - 1s - loss: 0.1258 - acc: 0.9634 - val_loss: 0.2899 - val_acc: 0.8868
Epoch 32/40
 - 1s - loss: 0.1212 - acc: 0.9652 - val_loss: 0.2919 - val_acc: 0.8854
Epoch 33/40
 - 1s - loss: 0.1159 - acc: 0.9679 - val_loss: 0.2941 - val_acc: 0.8853
Epoch 34/40
 - 1s - loss: 0.1115 - acc: 0.9690 - val_loss: 0.2972 - val_acc: 0.8852
Epoch 35/40
 - 1s - loss: 0.1077 - acc: 0.9705 - val_loss: 0.2988 - val_acc: 0.8845
Epoch 36/40
 - 1s - loss: 0.1028 - acc: 0.9727 - val_loss: 0.3020 - val_acc: 0.8841
Epoch 37/40
 - 1s - loss: 0.0990 - acc: 0.9737 - val_loss: 0.3050 - val_acc: 0.8830
Epoch 38/40
 - 1s - loss: 0.0956 - acc: 0.9745 - val_loss: 0.3087 - val_acc: 0.8824
Epoch 39/40
 - 1s - loss: 0.0914 - acc: 0.9765 - val_loss: 0.3109 - val_acc: 0.8832
Epoch 40/40
 - 1s - loss: 0.0878 - acc: 0.9780 - val_loss: 0.3148 - val_acc: 0.8822

   32/25000 [..............................] - ETA: 0s
 3328/25000 [==>...........................] - ETA: 0s
 7296/25000 [=======>......................] - ETA: 0s
11072/25000 [============>.................] - ETA: 0s
14304/25000 [================>.............] - ETA: 0s
17888/25000 [====================>.........] - ETA: 0s
21760/25000 [=========================>....] - ETA: 0s
25000/25000 [==============================] - 0s 16us/step
Result: [0.33562567461490633, 0.87216]
Keys: dict_keys([‘val_loss‘, ‘val_acc‘, ‘loss‘, ‘acc‘])

问题处理

问题1:执行imdb.load_data()失败

错误提示:
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/imdb.npz
.......
Exception: URL fetch failure on https://storage.googleapis.com/tensorflow/tf-keras-datasets/imdb.npz: None -- [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond

处理方法:

  • 方法1:手工下载文件,导入数据时参数path使用绝对路径;
  • 方法2:手工下载文件,并存放在“~/.keras/datasets”文件夹;

问题2:执行imdb.get_word_index()失败

错误提示:
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/imdb_word_index.json
......
Exception: URL fetch failure on https://storage.googleapis.com/tensorflow/tf-keras-datasets/imdb_word_index.json: None -- [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond

处理方法:

  • 手工下载文件,导入数据时参数path使用绝对路径;

原文地址:https://www.cnblogs.com/anliven/p/10604791.html

时间: 2024-08-15 04:52:52

AI - TensorFlow - 示例:影评文本分类的相关文章

机器学习的大局观:使用神经网络和TensorFlow来对文本分类

https://medium.freecodecamp.com/big-picture-machine-learning-classifying-text-with-neural-networks-and-tensorflow-d94036ac2274 机器学习的开发人员常常说,如果你想学习机器学习,必须先学习算法是怎么样工作的原理,但是我的经验告诉我,不是这样的. 我说,你应该首先能够看到大局:机器学习的应用程序是怎么样工作的.一旦你理解它,你就可以轻松地深入学习和体会到机器学习算法的工作原理

AI - TensorFlow - 示例01:基本分类

基本分类 基本分类(Basic classification):https://www.tensorflow.org/tutorials/keras/basic_classification Fashion MNIST数据集 经典 MNIST 数据集(常用作计算机视觉机器学习程序的“Hello, World”入门数据集)的简易替换 包含训练数据60000个,测试数据10000个,每个图片是28x28像素的灰度图像,涵盖10个类别 TensorFlow:https://www.tensorflow

AI - TensorFlow - 示例03:基本回归

基本回归 回归(Regression):https://www.tensorflow.org/tutorials/keras/basic_regression 主要步骤:数据部分 获取数据(Get the data) 清洗数据(Clean the data) 划分训练集和测试集(Split the data into train and test) 检查数据(Inspect the data) 分离标签(Split features from labels) 规范化数据(Normalize th

AI - TensorFlow - 示例05:保存和恢复模型

保存和恢复模型(Save and restore models) 官网示例:https://www.tensorflow.org/tutorials/keras/save_and_restore_models 在训练期间保存检查点 在训练期间或训练结束时自动保存检查点.权重存储在检查点格式的文件集合中,这些文件仅包含经过训练的权重(采用二进制格式).可以使用经过训练的模型,而无需重新训练该模型,或从上次暂停的地方继续训练,以防训练过程中断 检查点回调用法:创建检查点回调,训练模型并将ModelC

tensorflow实现基于LSTM的文本分类方法

tensorflow实现基于LSTM的文本分类方法 作者:u010223750 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用tensorflow实现了一下,感觉和之前使用的theano还是有很大的区别,有必要总结mark一下 模型说明 这个分类的模型其实也是很简单,主要就是一个单层的LSTM模型,当然也可以实现多层的模型,多层的模型使用Tensorflow尤其简单,下面是这个模型的图  简单解释一下这个图

深度学习用于文本分类的论文及代码集锦

深度学习用于文本分类的论文及代码集锦 原创: FrankLearningMachine 机器学习blog 4天前 [1] Convolutional Neural Networks for Sentence Classification Yoon Kim New York University EMNLP 2014 http://www.aclweb.org/anthology/D14-1181 这篇文章主要利用CNN基于预训练好的词向量中对句子进行分类.作者发现利用微调来学习任务相关的词向量可

谷歌做了45万次不同类型的文本分类后,总结出一个通用的“模型选择算法”...

谷歌做了45万次不同类型的文本分类后,总结出一个通用的"模型选择算法"... 2018年07月25日 17:43:55 阅读数:6 新智元报道 来源:developers.google.com 编译:肖琴.大明 [导读]谷歌官方推出"文本分类"指南教程.为了最大限度地简化选择文本分类模型的过程,谷歌在进行大约450K的文本分类实验后,总结出一个通用的"模型选择算法",并附上一个完整的流程图,非常实用. 文本分类(Text classificati

文本分类实战(五)—— Bi-LSTM + Attention模型

1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中,觉得有帮助,请

文本分类实战(六)—— RCNN模型

1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中,觉得有帮助,请