HDU 4123 Bob’s Race

Bob’s Race

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=4123

Description

Bob wants to hold a race to encourage people to do sports. He has got trouble in choosing the route. There are N houses and N - 1 roads in his village. Each road connects two houses, and all houses are connected together. To make the race more interesting, he requires that every participant must start from a different house and run AS FAR AS POSSIBLE without passing a road more than once. The distance difference between the one who runs the longest distance and the one who runs the shortest distance is called “race difference” by Bob. Bob does not want the “race difference”to be more than Q. The houses are numbered from 1 to N. Bob wants that the No. of all starting house must be consecutive. He is now asking you for help. He wants to know the maximum number of starting houses he can choose, by other words, the maximum number of people who can take part in his race.

Input

There are several test cases.
The first line of each test case contains two integers N and M. N is the number of houses, M is the number of queries.

The following N-1 lines, each contains three integers, x, y
and z, indicating that there is a road of length z connecting house x
and house y.

The following M lines are the queries. Each line contains an
integer Q, asking that at most how many people can take part in Bob’s
race according to the above mentioned rules and under the condition that
the“race difference”is no more than Q.

The input ends with N = 0 and M = 0.

(N<=50000 M<=500 1<=x,y<=N 0<=z<=5000 Q<=10000000)

Output

For each test case, you should output the answer in a line for each query.

Sample Input

5 5
1 2 3
2 3 4
4 5 3
3 4 2
1
2
3
4
5
0 0

Sample Output

13335 

HINT

题意

一个城镇有N个住户,N-1条路连接两个住户,保证N个住户联通,M次询问,给定N条边的信息,包括连
接的住户序号以及路的长度。然后是M次询问,每次询问Q,要求找到最长的连续序号(我一开始看成了树上连续一段),使得Max(dis[i]) - Min(dis[i]) ≤
Q(l≤i≤r),输出最大的r-l+1。dis[i]为从第i个住户出发,不重复走过路能移动的最远距离。

题解:

1.首先需要知道一个 结论:树上每个节点理他最远的点肯定是数的直径的两个端点的其中一个。

2.如果你不会求树的直径以及两个端点,没关系,其实不难,任意找一个点dfs找到离它最远的点root1,root1一定是其中一个端点,然后再以root1为根dfs一遍求出理root1最远的点root2。这样就找到了两个端点。

3.求出每个点到最远点的距离,我这里是分别以root1,root2 dfs,求出每个点到root1和root2的距离,取个max即可。

4.题目转化成了,求最长的区间(l,r),满足max{l,r}-min{l,r}<=q。

5.其实可以用尺取法来做,因为假如(l,r)区间合法,那么(l+1,r)一定合法,那么枚举左端点,右端点只能单增,时间复杂度是O(n)的。

6.最后要搞个ST表求区间最大最小值。

我一开始用优先队列做的,然后T了,真是花样作死,非要加个log。

衷心提示:k=(int)(log(y-x+1)/2)会超时,这个需要预处理,亲测一个1.5s,另一个5.2秒。

优先队列tle代码

  1 #include<bits/stdc++.h>
  2 using namespace std;
  3 #define ll long long
  4 #define N 50050
  5 int n,m,val[N],dp1[N],dp2[N],flag[N];
  6 int tot,last[N];
  7 struct Edge{int from,to,val,s;}edges[N<<1];
  8 struct Node
  9 {
 10   int id,val;
 11   bool operator <(const Node&b)const
 12   {return val<b.val;}
 13 };
 14 template<typename T>void read(T&x)
 15 {
 16   ll k=0; char c=getchar();
 17   x=0;
 18   while(!isdigit(c)&&c!=EOF)k^=c==‘-‘,c=getchar();
 19   if (c==EOF)exit(0);
 20   while(isdigit(c))x=x*10+c-‘0‘,c=getchar();
 21   x=k?-x:x;
 22 }
 23 void read_char(char &c)
 24 {while(!isalpha(c=getchar())&&c!=EOF);}
 25 void AddEdge (int x,int y,int z)
 26 {
 27   edges[++tot]=Edge{x,y,z,last[x]};
 28   last[x]=tot;
 29 }
 30 void dfs1(int x,int pre,int &mx,int &root)
 31 {
 32   mx=0; root=x;
 33   int tpmx,tproot;
 34   for(int i=last[x];i;i=edges[i].s)
 35     {
 36       Edge &e=edges[i];
 37       if (e.to==pre)continue;
 38       dfs1(e.to,x,tpmx,tproot);
 39       if (tpmx+e.val>mx)
 40     {
 41       mx=tpmx+e.val;
 42       root=tproot;
 43     }
 44     }
 45 }
 46 void dfs2(int x,int pre,int *dp)
 47 {
 48   for(int i=last[x];i;i=edges[i].s)
 49     {
 50       Edge &e=edges[i];
 51       if (e.to==pre)continue;
 52       dp[e.to]=dp[x]+e.val;
 53       dfs2(e.to,x,dp);
 54     }
 55 }
 56
 57 void init()
 58 {
 59   read(n); read(m);
 60   if (n==0&&m==0)exit(0);
 61   for(int i=1;i<=n-1;i++)
 62     {
 63       int x,y,z;
 64       read(x); read(y); read(z);
 65       AddEdge(x,y,z);
 66       AddEdge(y,x,z);
 67     }
 68   int maxn=0,root1,root2;
 69   dfs1(1,0,maxn,root1);
 70   dfs1(root1,0,maxn,root2);
 71   dfs2(root1,0,dp1);
 72   dfs2(root2,0,dp2);
 73   for(int i=1;i<=n;i++) val[i]=max(dp1[i],dp2[i]);
 74 }
 75 void solve()
 76 {
 77   int r=0,ans=0,q;
 78   read(q);
 79   priority_queue<Node>Qmx,Qmi;
 80   memset(flag,0,sizeof(flag));
 81   for(int i=1;i<=n;i++)
 82     {
 83       while(r+1<=n&&(Qmx.empty()||
 84            (fabs(val[r+1]-Qmx.top().val)
 85             <=q&&fabs(val[r+1]+Qmi.top().val)<=q)))
 86     {
 87       Qmx.push(Node{r+1,val[r+1]});
 88       Qmi.push(Node{r+1,-val[r+1]});
 89       r++;
 90     }
 91       ans=max(ans,r-i+1);
 92       flag[i]=1;
 93       while(!Qmx.empty()&&flag[Qmx.top().id])Qmx.pop();
 94       while(!Qmi.empty()&&flag[Qmi.top().id])Qmi.pop();
 95     }
 96   printf("%d\n",ans);
 97 }
 98 void clear()
 99 {
100   tot=0;
101   memset(last,0,sizeof(last));
102   memset(dp1,0,sizeof(dp1));
103   memset(dp2,0,sizeof(dp2));
104   memset(flag,0,sizeof(flag));
105 }
106 int main()
107 {
108 #ifndef ONLINE_JUDGE
109   freopen("aa.in","r",stdin);
110 #endif
111   while(1)
112     {
113       clear();
114       init();
115       for(int i=1;i<=m;i++) solve();
116     }
117 }

ST表AC代码

  1 #include<bits/stdc++.h>
  2 using namespace std;
  3 #define ll long long
  4 #define N 50050
  5 int n,m,dp1[N],dp2[N],mx[N][20],mi[N][20],mm[N];
  6 int tot,last[N];
  7 struct Edge{int from,to,val,s;}edges[N<<1];
  8 template<typename T>void read(T&x)
  9 {
 10   ll k=0; char c=getchar();
 11   x=0;
 12   while(!isdigit(c)&&c!=EOF)k^=c==‘-‘,c=getchar();
 13   if (c==EOF)exit(0);
 14   while(isdigit(c))x=x*10+c-‘0‘,c=getchar();
 15   x=k?-x:x;
 16 }
 17 void read_char(char &c)
 18 {while(!isalpha(c=getchar())&&c!=EOF);}
 19 void AddEdge (int x,int y,int z)
 20 {
 21   edges[++tot]=Edge{x,y,z,last[x]};
 22   last[x]=tot;
 23 }
 24 void dfs1(int x,int pre,int &mx,int &root)
 25 {
 26   mx=0; root=x;
 27   int tpmx,tproot;
 28   for(int i=last[x];i;i=edges[i].s)
 29     {
 30       Edge &e=edges[i];
 31       if (e.to==pre)continue;
 32       dfs1(e.to,x,tpmx,tproot);
 33       if (tpmx+e.val>mx)
 34     {
 35       mx=tpmx+e.val;
 36       root=tproot;
 37     }
 38     }
 39 }
 40 void dfs2(int x,int pre,int *dp)
 41 {
 42   for(int i=last[x];i;i=edges[i].s)
 43     {
 44       Edge &e=edges[i];
 45       if (e.to==pre)continue;
 46       dp[e.to]=dp[x]+e.val;
 47       dfs2(e.to,x,dp);
 48     }
 49 }
 50
 51 void init()
 52 {
 53   read(n); read(m);
 54   if (n==0&&m==0)exit(0);
 55   for(int i=1;i<=n-1;i++)
 56     {
 57       int x,y,z;
 58       read(x); read(y); read(z);
 59       AddEdge(x,y,z);
 60       AddEdge(y,x,z);
 61     }
 62   int maxn=0,root1,root2;
 63   dfs1(1,0,maxn,root1);
 64   dfs1(root1,0,maxn,root2);
 65   dfs2(root1,0,dp1);
 66   dfs2(root2,0,dp2);
 67   for(int i=1;i<=n;i++) mx[i][0]=mi[i][0]=max(dp1[i],dp2[i]);
 68 }
 69 void init_ST()
 70 {
 71   mm[0]=-1;
 72   for(int i=1;i<=n;i++)mm[i]=(i&(i-1))==0?mm[i-1]+1:mm[i-1];
 73   for(int i=1;i<=20;i++)
 74     for(int j=1;j+(1<<i)-1<=n;j++)
 75       {
 76     mx[j][i]=max(mx[j][i-1],mx[j+(1<<(i-1))][i-1]);
 77     mi[j][i]=min(mi[j][i-1],mi[j+(1<<(i-1))][i-1]);
 78       }
 79 }
 80 int rmq(int x,int y)
 81 {
 82   int k=mm[y-x+1];
 83   int ans=max(mx[x][k],mx[y-(1<<k)+1][k]);
 84   ans-=min(mi[x][k],mi[y-(1<<k)+1][k]);
 85   return ans;
 86 }
 87 void solve()
 88 {
 89   int r=0,ans=0,q;
 90   read(q);
 91   for(int i=1;i<=n;i++)
 92     {
 93       while(r+1<=n&&rmq(i,r+1)<=q)r++;
 94       ans=max(ans,r-i+1);
 95     }
 96   printf("%d\n",ans);
 97 }
 98 void clear()
 99 {
100   tot=0;
101   memset(last,0,sizeof(last));
102   memset(dp1,0,sizeof(dp1));
103   memset(dp2,0,sizeof(dp2));
104 }
105 int main()
106 {
107 #ifndef ONLINE_JUDGE
108   freopen("aa.in","r",stdin);
109 #endif
110   clock_t now=clock();
111   while(1)
112     {
113       clear();
114       init();
115       init_ST();
116       for(int i=1;i<=m;i++) solve();
117     }
118
119 }

原文地址:https://www.cnblogs.com/mmmqqdd/p/10827457.html

时间: 2024-10-28 04:27:03

HDU 4123 Bob’s Race的相关文章

hdu 4123 Bob’s Race (树的直径相关+rmq+单调队列思想)

Bob's Race Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2115    Accepted Submission(s): 658 Problem Description Bob wants to hold a race to encourage people to do sports. He has got trouble

hdu 4123 Bob’s Race(树形dp+RMQ)

题目链接:hdu 4123 Bob's Race 题目大意:一个城镇有N个住户,N-1条路连接两个住户,保证N个住户联通,M次询问,给定N条边的信息,包括连 接的住户序号以及路的长度.然后是M次询问,每次询问Q,要求找到最长的连续序号,使得Max(dis[i]) - Min(dis[i]) ≤ Q(l≤i≤r),输出最大的r-l+1.dis[i]为从第i个住户出发,不重复走过路能移动的最远距离. 解题思路:树形dp,通过两次dfs,第1次处理出每个节点中孩子节点移动的最长距离和第二长距离,第2次

HDU 4123 Bob&#39;s Race:单调队列 + st表

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4123 题意: 给你一棵树,n个节点,每条边有长度. 然后有m个询问,每个询问给定一个q值. 设dis[i]为:从节点i出发,不重复经过节点,所能够走的最远距离. 每次询问问你:区间[l,r]最长能有多长,同时保证 max{dis[i]} - min{dis[i]} <= q (i∈[l,r]) 题解: 首先有一个结论: 从树上的任意一个节点出发,尽可能往远走,最终一定会到达树的直径的两个端点之一.

hdu 4123 Bob’s Race 树的直径+rmq+尺取

Bob’s Race Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description Bob wants to hold a race to encourage people to do sports. He has got trouble in choosing the route. There are N houses and N - 1 roads

HDU 4123 Bob’s Race(RMQ)

题意是说给出一棵树,N(10^5)个顶点,以及每条边的权值,现在需要选择连续的K个点(顶点编号连续),可以被选出来的条件是: 若d[i]代表顶点i到树上其他点的距离的最大值,使得区间[a, b]的d值的最大差值不大于Q, 也就是max(d[a], d[a + 1], ..., d[b]) - max(d[a], d[a + 1], ..., d[b]) <= Q Q是给出的一个查询(共有m<=500个查询),求对应每一个查询的K的最大值 思路是首先预处理出每个点到其他点的最大距离, 这可以通过

HDU 4123 Bob’s Race 树的直径+单调队列

题意: 给定n个点的带边权树Q个询问. 下面n-1行给出树 下面Q行每行一个数字表示询问. 首先求出dp[N] :dp[i]表示i点距离树上最远点的距离 询问u, 表示求出 dp 数组中最长的连续序列使得序列中最大值-最小值 <= u,输出这个序列的长度. 思路: 求dp数组就是求个树的直径然后dfs一下. 对于每个询问,可以用一个单调队列维护一下.O(n)的回答. #include <cstdio> #include <cstring> #include <strin

HDOJ 题目4123 Bob’s Race(树的直径+RMQ优化)

Bob's Race Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2753    Accepted Submission(s): 888 Problem Description Bob wants to hold a race to encourage people to do sports. He has got trouble

hdu 4123 树形DP+RMQ

http://acm.hdu.edu.cn/showproblem.php?pid=4123 Problem Description Bob wants to hold a race to encourage people to do sports. He has got trouble in choosing the route. There are N houses and N - 1 roads in his village. Each road connects two houses,

HDU 4123(树的直径+单调队列)

Bob’s Race Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2833    Accepted Submission(s): 917 Problem Description Bob wants to hold a race to encourage people to do sports. He has got trouble i